Permutation Equivariant Document Interaction Network for Neural Learning to Rank

Rama Kumar Pasumarthi, Honglei Zhuang, Xuanhui Wang, Michael Bendersky, Marc Najork
{"title":"Permutation Equivariant Document Interaction Network for Neural Learning to Rank","authors":"Rama Kumar Pasumarthi, Honglei Zhuang, Xuanhui Wang, Michael Bendersky, Marc Najork","doi":"10.1145/3409256.3409819","DOIUrl":null,"url":null,"abstract":"How to leverage cross-document interactions to improve ranking performance is an important topic in information retrieval research. The recent developments in deep learning show strength in modeling complex relationships across sequences and sets. It thus motivates us to study how to leverage cross-document interactions for learning-to-rank in the deep learning framework. In this paper, we formally define the permutation equivariance requirement for a scoring function that captures cross-document interactions. We then propose a self-attention based document interaction network that extends any univariate scoring function with contextual features capturing cross-document interactions. We show that it satisfies the permutation equivariance requirement, and can generate scores for document sets of varying sizes. Our proposed methods can automatically learn to capture document interactions without any auxiliary information, and can scale across large document sets. We conduct experiments on four ranking datasets: the public benchmarks WEB30K and Istella, as well as Gmail search and Google Drive Quick Access datasets. Experimental results show that our proposed methods lead to significant quality improvements over state-of-the-art neural ranking models, and are competitive with state-of-the-art gradient boosted decision tree (GBDT) based models on the WEB30K dataset.","PeriodicalId":430907,"journal":{"name":"Proceedings of the 2020 ACM SIGIR on International Conference on Theory of Information Retrieval","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 ACM SIGIR on International Conference on Theory of Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3409256.3409819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

How to leverage cross-document interactions to improve ranking performance is an important topic in information retrieval research. The recent developments in deep learning show strength in modeling complex relationships across sequences and sets. It thus motivates us to study how to leverage cross-document interactions for learning-to-rank in the deep learning framework. In this paper, we formally define the permutation equivariance requirement for a scoring function that captures cross-document interactions. We then propose a self-attention based document interaction network that extends any univariate scoring function with contextual features capturing cross-document interactions. We show that it satisfies the permutation equivariance requirement, and can generate scores for document sets of varying sizes. Our proposed methods can automatically learn to capture document interactions without any auxiliary information, and can scale across large document sets. We conduct experiments on four ranking datasets: the public benchmarks WEB30K and Istella, as well as Gmail search and Google Drive Quick Access datasets. Experimental results show that our proposed methods lead to significant quality improvements over state-of-the-art neural ranking models, and are competitive with state-of-the-art gradient boosted decision tree (GBDT) based models on the WEB30K dataset.
基于神经学习排序的排列等变文档交互网络
如何利用跨文档交互来提高排序性能是信息检索研究中的一个重要课题。深度学习的最新发展显示了在跨序列和集合的复杂关系建模方面的实力。因此,它激励我们研究如何在深度学习框架中利用跨文档交互来学习排名。在本文中,我们正式定义了捕获跨文档交互的评分函数的排列等方差要求。然后,我们提出了一个基于自关注的文档交互网络,该网络扩展了任何单变量评分函数,具有捕获跨文档交互的上下文特征。我们证明了它满足排列等方差要求,并且可以为不同大小的文档集生成分数。我们提出的方法可以在没有任何辅助信息的情况下自动学习捕获文档交互,并且可以跨大型文档集扩展。我们在四个排名数据集上进行了实验:公共基准WEB30K和Istella,以及Gmail搜索和谷歌驱动快速访问数据集。实验结果表明,我们提出的方法比最先进的神经排序模型的质量有了显著的提高,并且与基于WEB30K数据集的最先进的梯度增强决策树(GBDT)模型具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信