Recursive Subspace Identification for Online Thermal Management of Implantable Devices

Ayca Ermis, Yen-Pang Lai, Xinhai Pan, Ruizhi Chai, Ying Zhang
{"title":"Recursive Subspace Identification for Online Thermal Management of Implantable Devices","authors":"Ayca Ermis, Yen-Pang Lai, Xinhai Pan, Ruizhi Chai, Ying Zhang","doi":"10.1109/ALLERTON.2019.8919656","DOIUrl":null,"url":null,"abstract":"This paper focuses on application of subspace identification methods to predict the thermal dynamics of bio-implants, e.g. UEA. Recursive subspace identification method implemented in this paper predicts the temperature readings of heat sensors in an online fashion within a finite time window and updates the system parameters iteratively to improve the performance of the algorithm. Algorithm validation is realized using COMSOL software simulations as well as using an in vitro experimental system. Both simulation and experimental results indicate that the proposed method can accurately predict the thermal dynamics of the system. The experimental results show online prediction of the thermal effect with a mean squared error of $1. 569 \\times 10^{-2}$ °C for randomly generated Gaussian inputs and $3. 46 \\times 10^{-3}$ °C for square wave inputs after adaptive filters converge.","PeriodicalId":120479,"journal":{"name":"2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2019.8919656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper focuses on application of subspace identification methods to predict the thermal dynamics of bio-implants, e.g. UEA. Recursive subspace identification method implemented in this paper predicts the temperature readings of heat sensors in an online fashion within a finite time window and updates the system parameters iteratively to improve the performance of the algorithm. Algorithm validation is realized using COMSOL software simulations as well as using an in vitro experimental system. Both simulation and experimental results indicate that the proposed method can accurately predict the thermal dynamics of the system. The experimental results show online prediction of the thermal effect with a mean squared error of $1. 569 \times 10^{-2}$ °C for randomly generated Gaussian inputs and $3. 46 \times 10^{-3}$ °C for square wave inputs after adaptive filters converge.
可植入器件热在线管理的递归子空间辨识
本文重点研究了子空间识别方法在生物植入物热动力学预测中的应用。本文实现的递归子空间识别方法在有限时间窗内在线预测热传感器的温度读数,并迭代更新系统参数以提高算法的性能。通过COMSOL软件仿真和体外实验系统实现了算法的验证。仿真和实验结果表明,该方法能够准确地预测系统的热动力学。实验结果表明,热效应的在线预测均方根误差为1美元。569 \乘以10^{-2}$°C对于随机生成的高斯输入和$3。46 \乘以10^{-3}$°C自适应滤波器收敛后的方波输入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信