Single-Channel EEG SSVEP-based BCI for Robot Arm Control

Sanduni P. Karunasena, Darshana C. Ariyarathna, R. Ranaweera, J. Wijayakulasooriya, Kwangtaek Kim, T. Dassanayake
{"title":"Single-Channel EEG SSVEP-based BCI for Robot Arm Control","authors":"Sanduni P. Karunasena, Darshana C. Ariyarathna, R. Ranaweera, J. Wijayakulasooriya, Kwangtaek Kim, T. Dassanayake","doi":"10.1109/SAS51076.2021.9530189","DOIUrl":null,"url":null,"abstract":"Brain-Computer Interfacing (BCI) systems can be used to improve the quality of life of disabled individuals. Electroencephalography (EEG) Steady-State Visual Evoked Potentials (SSVEP) based BCI systems provide a non-invasive, inexpensive method of communication and control with minimal user training. Among many applications of BCI systems, robot control is widely used to restore motor functions of individuals with severe neuromuscular disabilities. In this paper, a low-cost, single-channel, SSVEP based BCI system is implemented to control the motion of the wrist and the gripper of a robot arm. The SSVEP user commands are generated by focusing the user's gaze on a set of light-emitting diodes (LED) flickering at different frequencies. For the identification of user intent to generate control commands, a classification algorithm is proposed, which is based on Euclidean distance measurement between prominent peaks of the SSVEP Fast Fourier Transform (FFT) spectrum, and the fundamental and harmonic spectral content of stimulus frequency.","PeriodicalId":224327,"journal":{"name":"2021 IEEE Sensors Applications Symposium (SAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS51076.2021.9530189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Brain-Computer Interfacing (BCI) systems can be used to improve the quality of life of disabled individuals. Electroencephalography (EEG) Steady-State Visual Evoked Potentials (SSVEP) based BCI systems provide a non-invasive, inexpensive method of communication and control with minimal user training. Among many applications of BCI systems, robot control is widely used to restore motor functions of individuals with severe neuromuscular disabilities. In this paper, a low-cost, single-channel, SSVEP based BCI system is implemented to control the motion of the wrist and the gripper of a robot arm. The SSVEP user commands are generated by focusing the user's gaze on a set of light-emitting diodes (LED) flickering at different frequencies. For the identification of user intent to generate control commands, a classification algorithm is proposed, which is based on Euclidean distance measurement between prominent peaks of the SSVEP Fast Fourier Transform (FFT) spectrum, and the fundamental and harmonic spectral content of stimulus frequency.
基于单通道EEG ssvep的脑机接口在机械臂控制中的应用
脑机接口(BCI)系统可用于改善残疾人的生活质量。基于脑电图(EEG)稳态视觉诱发电位(SSVEP)的脑机接口系统提供了一种无创、廉价的通信和控制方法,只需最少的用户培训。在脑机接口系统的众多应用中,机器人控制被广泛用于恢复严重神经肌肉残疾患者的运动功能。本文实现了一种低成本、单通道、基于SSVEP的BCI系统,用于控制机器人手臂的手腕和夹持器的运动。SSVEP用户命令是通过将用户的目光聚焦在一组以不同频率闪烁的发光二极管(LED)上而生成的。为了识别用户意图并生成控制命令,提出了一种基于SSVEP快速傅里叶变换(FFT)频谱显著峰之间的欧氏距离测量与刺激频率的基频和谐波谱含量的分类算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信