Computer aided long bone fracture detection

M. Donnelley, G. Knowles
{"title":"Computer aided long bone fracture detection","authors":"M. Donnelley, G. Knowles","doi":"10.1109/ISSPA.2005.1580224","DOIUrl":null,"url":null,"abstract":"We have developed a method of automatically detecting fractures in long bones. While bone fractures are a relatively common occurence, their presence can often be missed during x-ray diagnosis, resulting in ineffective patient management. Detection of fractures in long bones is an important orthopaedic and radiologic problem, so we propose a computer aided detection system to help reduce the miss rate. Our fracture detection algorithm consists of a number of steps. The first is extraction of edges from the x-ray image using a non-linear anisotropic diffusion method - the affine morphological scale space - that smoothes the image without losing critical information about the boundary locations within the image. The second is a modified Hough transform with automatic peak detection, which is used to determine parameters for the straight lines that best approximate the edges of the long bones. A composite of the magnitude and direction of the gradient is then created using the calculated line parameters. This allows abnormal regions, including fractures, to be highlighted. Experiments on a library of images show that this method consistently detects mid-shaft long bone fractures.","PeriodicalId":385337,"journal":{"name":"Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, 2005.","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.2005.1580224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

We have developed a method of automatically detecting fractures in long bones. While bone fractures are a relatively common occurence, their presence can often be missed during x-ray diagnosis, resulting in ineffective patient management. Detection of fractures in long bones is an important orthopaedic and radiologic problem, so we propose a computer aided detection system to help reduce the miss rate. Our fracture detection algorithm consists of a number of steps. The first is extraction of edges from the x-ray image using a non-linear anisotropic diffusion method - the affine morphological scale space - that smoothes the image without losing critical information about the boundary locations within the image. The second is a modified Hough transform with automatic peak detection, which is used to determine parameters for the straight lines that best approximate the edges of the long bones. A composite of the magnitude and direction of the gradient is then created using the calculated line parameters. This allows abnormal regions, including fractures, to be highlighted. Experiments on a library of images show that this method consistently detects mid-shaft long bone fractures.
计算机辅助长骨骨折检测
我们已经开发了一种自动检测长骨骨折的方法。虽然骨折是一种相对常见的情况,但在x线诊断中往往会遗漏其存在,从而导致无效的患者管理。长骨骨折的检测是一个重要的骨科和放射学问题,因此我们提出了一种计算机辅助检测系统来帮助降低漏检率。我们的裂缝检测算法由几个步骤组成。首先是使用非线性各向异性扩散方法(仿射形态尺度空间)从x射线图像中提取边缘,该方法在不丢失图像中边界位置的关键信息的情况下使图像平滑。第二种是带有自动峰值检测的改进霍夫变换,用于确定最接近长骨边缘的直线参数。然后使用计算的线参数创建梯度的大小和方向的复合。这使得包括骨折在内的异常区域得以突出显示。在图像库上进行的实验表明,该方法能够较好地检测中轴长骨骨折。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信