{"title":"Detection and localization of cable faults by time and frequency domain measurements","authors":"Qinghai Shi, Uwe Troeltzsch, O. Kanoun","doi":"10.1109/SSD.2010.5585506","DOIUrl":null,"url":null,"abstract":"The localization of cable faults is very important for communication systems, power distribution systems and vehicles. Reflectometry methods are often used to detect and locate cable faults. A high-frequency signal is send down the cable. The reflected signal includes information about changes of cable impedance. With measurement of the time or phase delay the faults can be detected and located. These methods are used to detect open and short circuits. There are also techniques available for detecting frays, joints and other small anomalies. This paper describes and simulates different wire test methods that suitable for portable or in-situ test equipment and compares their advantages and disadvantages. The methods compared are the time domain reflectometry (TDR), time frequency domain reflectometry (TFDR) and frequency domain reflectometry (FDR).","PeriodicalId":432382,"journal":{"name":"2010 7th International Multi- Conference on Systems, Signals and Devices","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 7th International Multi- Conference on Systems, Signals and Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSD.2010.5585506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57
Abstract
The localization of cable faults is very important for communication systems, power distribution systems and vehicles. Reflectometry methods are often used to detect and locate cable faults. A high-frequency signal is send down the cable. The reflected signal includes information about changes of cable impedance. With measurement of the time or phase delay the faults can be detected and located. These methods are used to detect open and short circuits. There are also techniques available for detecting frays, joints and other small anomalies. This paper describes and simulates different wire test methods that suitable for portable or in-situ test equipment and compares their advantages and disadvantages. The methods compared are the time domain reflectometry (TDR), time frequency domain reflectometry (TFDR) and frequency domain reflectometry (FDR).