Sampling methods with least information loss in transit videos for the reduction of manual work and computational processing

Javier Herrera, Jim Zuniga
{"title":"Sampling methods with least information loss in transit videos for the reduction of manual work and computational processing","authors":"Javier Herrera, Jim Zuniga","doi":"10.1109/jocici54528.2021.9794344","DOIUrl":null,"url":null,"abstract":"Automated object recognition in traffic videos is a complex and time-consuming task that requires not only computational processes, but also some manual labor. The amount of time spent on both processes and labor is closely related to the number of frames to be processed. In this research, various sampling methods were studied to reduce the number of frames. Systematic sampling of 29% of the frames is the one that uses the least number of frames and is also equivalent to the census in terms of recognition error.","PeriodicalId":339143,"journal":{"name":"2021 IEEE V Jornadas Costarricenses de Investigación en Computación e Informática (JoCICI)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE V Jornadas Costarricenses de Investigación en Computación e Informática (JoCICI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/jocici54528.2021.9794344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Automated object recognition in traffic videos is a complex and time-consuming task that requires not only computational processes, but also some manual labor. The amount of time spent on both processes and labor is closely related to the number of frames to be processed. In this research, various sampling methods were studied to reduce the number of frames. Systematic sampling of 29% of the frames is the one that uses the least number of frames and is also equivalent to the census in terms of recognition error.
传输视频中信息损失最小的采样方法,以减少人工工作和计算处理
交通视频中的自动目标识别是一项复杂而耗时的任务,不仅需要计算过程,而且需要一定的人工劳动。在处理和人工上花费的时间与要处理的帧数密切相关。在本研究中,研究了各种采样方法来减少帧数。系统采样29%的帧是使用帧数最少的一种,在识别误差方面也相当于普查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信