Optimization algorithms, benchmarks and performance measures: From static to dynamic environment

R. Fdhila, T. M. Hamdani, A. Alimi
{"title":"Optimization algorithms, benchmarks and performance measures: From static to dynamic environment","authors":"R. Fdhila, T. M. Hamdani, A. Alimi","doi":"10.1109/ISDA.2015.7489185","DOIUrl":null,"url":null,"abstract":"This paper is a tentative to describe the basics of dynamic optimization using swarm & evolutionary methods. Computational intelligence methods based on swarming, collaborative computing and related techniques showed their potentials at solving classical static problems; for dynamic problems new paradigms needs to be established, this concerns the methods, the test benches and the performance evaluation processes. A review of the key population based computational techniques is performed prior to set some perspective guidelines on how to handle the multi-objective dynamic problems using these technique.","PeriodicalId":196743,"journal":{"name":"2015 15th International Conference on Intelligent Systems Design and Applications (ISDA)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 15th International Conference on Intelligent Systems Design and Applications (ISDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2015.7489185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper is a tentative to describe the basics of dynamic optimization using swarm & evolutionary methods. Computational intelligence methods based on swarming, collaborative computing and related techniques showed their potentials at solving classical static problems; for dynamic problems new paradigms needs to be established, this concerns the methods, the test benches and the performance evaluation processes. A review of the key population based computational techniques is performed prior to set some perspective guidelines on how to handle the multi-objective dynamic problems using these technique.
优化算法,基准和性能测量:从静态到动态环境
本文尝试用群进化方法描述动态优化的基本原理。基于群计算、协同计算和相关技术的计算智能方法在解决经典静态问题方面显示出潜力;对于动态问题,需要建立新的范式,这涉及到方法、测试平台和性能评估过程。在对如何使用这些技术处理多目标动态问题设置一些远景指南之前,对基于关键种群的计算技术进行了回顾。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信