Bayesian estimation of Two-Sided Gamma random vectors in speckle noise

P. Kittisuwan
{"title":"Bayesian estimation of Two-Sided Gamma random vectors in speckle noise","authors":"P. Kittisuwan","doi":"10.1109/ISCIT.2013.6645887","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel speckle removal algorithm within the framework of Bayesian estimation and wavelet analysis. The proposed method to apply a logarithmic transformation to convert speckel, multiplicative, noise model into an additive noise model. The subband decomposition of logarithmically transformed image are the best described by a family of heavy-tailed densities such as Two-Sided Gamma. Then, we propose a maximum a posterior (MAP) estimator assuming Two-Sided Gamma random vectors for each parent-child wavelet coefficients of noise-free log-transformed data and log-normal density for speckle noise. The experimental results show that the proposed method yields good denoising results.","PeriodicalId":356009,"journal":{"name":"2013 13th International Symposium on Communications and Information Technologies (ISCIT)","volume":"18 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 13th International Symposium on Communications and Information Technologies (ISCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCIT.2013.6645887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a novel speckle removal algorithm within the framework of Bayesian estimation and wavelet analysis. The proposed method to apply a logarithmic transformation to convert speckel, multiplicative, noise model into an additive noise model. The subband decomposition of logarithmically transformed image are the best described by a family of heavy-tailed densities such as Two-Sided Gamma. Then, we propose a maximum a posterior (MAP) estimator assuming Two-Sided Gamma random vectors for each parent-child wavelet coefficients of noise-free log-transformed data and log-normal density for speckle noise. The experimental results show that the proposed method yields good denoising results.
散斑噪声中双侧伽玛随机向量的贝叶斯估计
在贝叶斯估计和小波分析的框架下,提出了一种新的斑点去除算法。提出了一种采用对数变换将散斑乘性噪声模型转换为加性噪声模型的方法。对数变换图像的子带分解是用双侧伽玛等重尾密度族来描述的。然后,我们提出了一个最大后验(MAP)估计量,假设无噪声对数变换数据的每个父子小波系数的双侧Gamma随机向量和散斑噪声的对数正态密度。实验结果表明,该方法具有较好的去噪效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信