Sensorless control of PMSM using a new efficient neural network speed estimator

Elisabeth C. L. Sperb, L. Negri, Anna K. S. Baasch, Horacio B. Polli, J. de Oliveira, A. Nied
{"title":"Sensorless control of PMSM using a new efficient neural network speed estimator","authors":"Elisabeth C. L. Sperb, L. Negri, Anna K. S. Baasch, Horacio B. Polli, J. de Oliveira, A. Nied","doi":"10.1109/POWERENG.2011.6036447","DOIUrl":null,"url":null,"abstract":"In order to reduce the cost and improve the reliability of variable speed drives, sensorless techniques for estimation rotor speed from measurement of voltage and current have been the subject of intensive research. This paper proposes a sensorless control strategy for Permanent Magnet Synchronous Motor (PMSM) control using a novel neural network algorithm. The proposed observer uses a neural network trained to learn the electrical and mechanical motor models using the current prediction error. Experiments were performed, showing that the proposed network topology and training algorithm have advantages to the classical ones currently employed in sensorless control.","PeriodicalId":166144,"journal":{"name":"2011 International Conference on Power Engineering, Energy and Electrical Drives","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Power Engineering, Energy and Electrical Drives","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/POWERENG.2011.6036447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In order to reduce the cost and improve the reliability of variable speed drives, sensorless techniques for estimation rotor speed from measurement of voltage and current have been the subject of intensive research. This paper proposes a sensorless control strategy for Permanent Magnet Synchronous Motor (PMSM) control using a novel neural network algorithm. The proposed observer uses a neural network trained to learn the electrical and mechanical motor models using the current prediction error. Experiments were performed, showing that the proposed network topology and training algorithm have advantages to the classical ones currently employed in sensorless control.
采用一种新型的高效神经网络速度估计器对永磁同步电机进行无传感器控制
为了降低成本和提高变速传动的可靠性,通过测量电压和电流来估计转子转速的无传感器技术一直是人们研究的热点。提出了一种基于神经网络的永磁同步电机无传感器控制策略。该观测器使用经过训练的神经网络,利用当前预测误差学习电机和机械模型。实验结果表明,所提出的网络拓扑和训练算法比目前无传感器控制中使用的经典网络拓扑和训练算法具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信