Haplotype pattern mining & classification for detecting disease associated site

T. Kido, Masanori Baba, Hirohito Matsumine, Yoko Higashi, Hirotaka Higuchi, Masaaki Muramatsu
{"title":"Haplotype pattern mining & classification for detecting disease associated site","authors":"T. Kido, Masanori Baba, Hirohito Matsumine, Yoko Higashi, Hirotaka Higuchi, Masaaki Muramatsu","doi":"10.1109/CSB.2003.1227369","DOIUrl":null,"url":null,"abstract":"Finding the causative genes for common diseases using SNP (single nucleotide polymorphism) markers is now becoming a real challenge. Although traditional statistical SNP association tests exist, these tests could not explain the effects of SNP combinations or probable recombination histories from ancestral chromosomes. Haplotype analysis of disease associated site provides more powerful markers than individual SNP analysis, and can help identify probable causative mutations. In this paper, we introduce a new method for effective haplotype pattern mining to detect disease associated mutations. Using this procedure, we can discover some of the new disease associated SNPs, which can not be detected by traditional methods. We will introduce a powerful tool for implementing this procedure with some worked examples.","PeriodicalId":147883,"journal":{"name":"Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSB.2003.1227369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Finding the causative genes for common diseases using SNP (single nucleotide polymorphism) markers is now becoming a real challenge. Although traditional statistical SNP association tests exist, these tests could not explain the effects of SNP combinations or probable recombination histories from ancestral chromosomes. Haplotype analysis of disease associated site provides more powerful markers than individual SNP analysis, and can help identify probable causative mutations. In this paper, we introduce a new method for effective haplotype pattern mining to detect disease associated mutations. Using this procedure, we can discover some of the new disease associated SNPs, which can not be detected by traditional methods. We will introduce a powerful tool for implementing this procedure with some worked examples.
用于疾病相关位点检测的单倍型模式挖掘与分类
利用SNP(单核苷酸多态性)标记寻找常见疾病的致病基因现在正成为一个真正的挑战。虽然存在传统的统计SNP关联测试,但这些测试不能解释SNP组合的影响或来自祖先染色体的可能重组历史。疾病相关位点的单倍型分析提供了比单个SNP分析更强大的标记,可以帮助识别可能的致病突变。本文介绍了一种有效的单倍型模式挖掘方法来检测疾病相关突变。利用这种方法,我们可以发现一些新的疾病相关的snp,这些snp是传统方法无法检测到的。我们将通过一些工作示例介绍一个强大的工具来实现这个过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信