Gland segmentation guided by glandular structures: A level set framework with two levels

Chen Wang, J. Bao, H. Bu
{"title":"Gland segmentation guided by glandular structures: A level set framework with two levels","authors":"Chen Wang, J. Bao, H. Bu","doi":"10.1109/ICIP.2017.8296663","DOIUrl":null,"url":null,"abstract":"Pathologic diagnosis is the gold standard of clinical diagnosis. The identification and segmentation of histological structures are the prerequisites to disease diagnosis. In clinic, doctors often suffer from time consuming and the disagreements from different doctors about observation results. Hence, an automatic precise segmentation method is important for auxiliary diagnosis. We propose a level set framework using 0, k level set representing the boundary of lumen regions and epithelial layers for gland segmentation. The validation has been performed on clinical data of West China Hospital, Sichuan University. The experiment results show that our method has a better performance and is robust to the shape variety of endometrial glands.","PeriodicalId":229602,"journal":{"name":"2017 IEEE International Conference on Image Processing (ICIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2017.8296663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Pathologic diagnosis is the gold standard of clinical diagnosis. The identification and segmentation of histological structures are the prerequisites to disease diagnosis. In clinic, doctors often suffer from time consuming and the disagreements from different doctors about observation results. Hence, an automatic precise segmentation method is important for auxiliary diagnosis. We propose a level set framework using 0, k level set representing the boundary of lumen regions and epithelial layers for gland segmentation. The validation has been performed on clinical data of West China Hospital, Sichuan University. The experiment results show that our method has a better performance and is robust to the shape variety of endometrial glands.
由腺体结构引导的腺体分割:一个有两个层次的水平集框架
病理诊断是临床诊断的金标准。组织结构的识别和分割是疾病诊断的前提。在临床中,医生经常会耗费大量时间,而且不同医生对观察结果的意见不一。因此,一种自动精确的分割方法对辅助诊断至关重要。我们提出了一个水平集框架,使用0,k水平集表示管腔区域和上皮层的边界,用于腺体分割。用四川大学华西医院的临床资料进行了验证。实验结果表明,该方法对子宫内膜腺的形状变化具有较好的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信