Parallel FMM-FFT solver for the analysis of hundreds of millions of unknowns

J. M. Taboada, L. Landesa, F. Obelleiro, J. L. Rodríguez, J. Bértolo, J. C. Mouriño, A. Gómez
{"title":"Parallel FMM-FFT solver for the analysis of hundreds of millions of unknowns","authors":"J. M. Taboada, L. Landesa, F. Obelleiro, J. L. Rodríguez, J. Bértolo, J. C. Mouriño, A. Gómez","doi":"10.1109/CEM.2009.5228111","DOIUrl":null,"url":null,"abstract":"An efficient parallel implementation of the fast multipole method (FMM) combined with the fast fourier transform (FFT) is presented. The good scaling properties of the FMM-FFT, combined with a careful parallelization strategy, has shown to be very effective when using large parallel high performance supercomputers. For the case of very large problems, with hundreds of millions of unknowns, a nested scheme has been derived that further reduces the memory consumption. A challenging problem with more than 0.5 billion unknowns has been solved using this implementation, which demonstrates the ability of the algorithm to take advantage of the availability of supercomputers for the analysis of large, leading-edge electromagnetic problems.","PeriodicalId":416029,"journal":{"name":"2009 Computational Electromagnetics International Workshop","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Computational Electromagnetics International Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEM.2009.5228111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

An efficient parallel implementation of the fast multipole method (FMM) combined with the fast fourier transform (FFT) is presented. The good scaling properties of the FMM-FFT, combined with a careful parallelization strategy, has shown to be very effective when using large parallel high performance supercomputers. For the case of very large problems, with hundreds of millions of unknowns, a nested scheme has been derived that further reduces the memory consumption. A challenging problem with more than 0.5 billion unknowns has been solved using this implementation, which demonstrates the ability of the algorithm to take advantage of the availability of supercomputers for the analysis of large, leading-edge electromagnetic problems.
并行FMM-FFT求解器,用于分析数亿未知数
提出了一种结合快速傅立叶变换(FFT)的快速多极子法(FMM)的高效并行实现方法。FMM-FFT的良好缩放特性,结合谨慎的并行化策略,在使用大型并行高性能超级计算机时显示出非常有效的效果。对于非常大的问题,有数以亿计的未知数,我们推导了一个嵌套的方案,可以进一步减少内存消耗。使用此实现解决了一个具有超过5亿个未知数的具有挑战性的问题,这证明了该算法利用超级计算机的可用性来分析大型前沿电磁问题的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信