RDIT: race detection from incomplete traces

Arun K. Rajagopalan
{"title":"RDIT: race detection from incomplete traces","authors":"Arun K. Rajagopalan","doi":"10.1145/2889160.2891039","DOIUrl":null,"url":null,"abstract":"We present RDIT, a novel dynamic algorithm to precisely detect data races in multi-threaded programs with incomplete trace information - the presence of missing events. RDIT enhances the Happens-Before algorithm by relaxing the need to collect the full execution trace, while still being precise and maximal i.e, it detects a maximal set of true data races while generating no false positives. Our approach is based on a sound BarrierPair model that abstracts away missing events by capturing the invocation data of their enclosing methods. By making the least conservative abstraction and by formulating maximal thread causality as logical constraints, we can detect a maximal set of true races from the information available.","PeriodicalId":111740,"journal":{"name":"Proceedings of the 38th International Conference on Software Engineering Companion","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 38th International Conference on Software Engineering Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2889160.2891039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present RDIT, a novel dynamic algorithm to precisely detect data races in multi-threaded programs with incomplete trace information - the presence of missing events. RDIT enhances the Happens-Before algorithm by relaxing the need to collect the full execution trace, while still being precise and maximal i.e, it detects a maximal set of true data races while generating no false positives. Our approach is based on a sound BarrierPair model that abstracts away missing events by capturing the invocation data of their enclosing methods. By making the least conservative abstraction and by formulating maximal thread causality as logical constraints, we can detect a maximal set of true races from the information available.
rit:从不完整的轨迹中进行竞争检测
我们提出了一种新的动态算法RDIT,用于精确检测具有不完整跟踪信息的多线程程序中的数据竞争-缺失事件的存在。RDIT通过减少收集完整执行跟踪的需要来增强Happens-Before算法,同时仍然是精确和最大的,即,它检测最大的真实数据竞争集,同时不产生假阳性。我们的方法基于一个健全的BarrierPair模型,该模型通过捕获其封装方法的调用数据来抽象丢失的事件。通过最不保守的抽象和将最大线程因果关系表述为逻辑约束,我们可以从可用的信息中检测出最大的真竞赛集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信