Identifying relevant common sense information in knowledge graphs

Guy Aglionby, Simone Tuefel
{"title":"Identifying relevant common sense information in knowledge graphs","authors":"Guy Aglionby, Simone Tuefel","doi":"10.18653/v1/2022.csrr-1.1","DOIUrl":null,"url":null,"abstract":"Knowledge graphs are often used to store common sense information that is useful for various tasks. However, the extraction of contextually-relevant knowledge is an unsolved problem, and current approaches are relatively simple. Here we introduce a triple selection method based on a ranking model and find that it improves question answering accuracy over existing methods. We additionally investigate methods to ensure that extracted triples form a connected graph. Graph connectivity is important for model interpretability, as paths are frequently used as explanations for the reasoning that connects question and answer.","PeriodicalId":166496,"journal":{"name":"Proceedings of the First Workshop on Commonsense Representation and Reasoning (CSRR 2022)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First Workshop on Commonsense Representation and Reasoning (CSRR 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.csrr-1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Knowledge graphs are often used to store common sense information that is useful for various tasks. However, the extraction of contextually-relevant knowledge is an unsolved problem, and current approaches are relatively simple. Here we introduce a triple selection method based on a ranking model and find that it improves question answering accuracy over existing methods. We additionally investigate methods to ensure that extracted triples form a connected graph. Graph connectivity is important for model interpretability, as paths are frequently used as explanations for the reasoning that connects question and answer.
识别知识图中相关的常识信息
知识图通常用于存储对各种任务有用的常识性信息。然而,上下文相关知识的提取是一个未解决的问题,目前的方法相对简单。本文介绍了一种基于排序模型的三重选择方法,并发现它比现有方法提高了问答精度。我们还研究了确保提取的三元组形成连通图的方法。图的连接性对于模型的可解释性很重要,因为路径经常被用作连接问题和答案的推理的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信