Classification of SSVEP Signals using Neural Networks for BCI Applications

Rebba Prashanth Kumar, Sangineni Siri Vandana, Dushetti Tejaswi, K. Charan, Ravichander Janapati, Usha Desai
{"title":"Classification of SSVEP Signals using Neural Networks for BCI Applications","authors":"Rebba Prashanth Kumar, Sangineni Siri Vandana, Dushetti Tejaswi, K. Charan, Ravichander Janapati, Usha Desai","doi":"10.1109/ICICCSP53532.2022.9862368","DOIUrl":null,"url":null,"abstract":"Brain-Computer-Interface (BCI) is an exceedingly growing field of research where individual communicates to the computer, without physical connection. The natural responses to visual stimulation at a particular frequency of EEG are characterized as Steady-State Visually Evoked Potential (SSVEP) signals. Efficient classification of EEG signals is an important phase in BCI. In this paper, a method is anticipated for classification of SSVEP signals in which the standard dataset and Neural Network (NN) classifier is applied. The improved classification accuracy of 90 % is achieved using the proposed method. This methodology is useful in BCI applications such as assisting people who are suffering from neurodegenerative problems; Amyotrophic Lateral Sclerosis (ALS) for automatic wheelchair navigation-based multimedia applications, etc.","PeriodicalId":326163,"journal":{"name":"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICCSP53532.2022.9862368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Brain-Computer-Interface (BCI) is an exceedingly growing field of research where individual communicates to the computer, without physical connection. The natural responses to visual stimulation at a particular frequency of EEG are characterized as Steady-State Visually Evoked Potential (SSVEP) signals. Efficient classification of EEG signals is an important phase in BCI. In this paper, a method is anticipated for classification of SSVEP signals in which the standard dataset and Neural Network (NN) classifier is applied. The improved classification accuracy of 90 % is achieved using the proposed method. This methodology is useful in BCI applications such as assisting people who are suffering from neurodegenerative problems; Amyotrophic Lateral Sclerosis (ALS) for automatic wheelchair navigation-based multimedia applications, etc.
基于脑机接口应用的SSVEP信号分类
脑机接口(BCI)是一个正在迅速发展的研究领域,它是指人与计算机进行通信,而无需物理连接。脑电在特定频率下对视觉刺激的自然反应被描述为稳态视觉诱发电位(SSVEP)信号。脑电信号的有效分类是脑机接口的一个重要环节。本文提出了一种应用标准数据集和神经网络分类器对SSVEP信号进行分类的方法。该方法的分类准确率达到90%以上。这种方法在脑机接口应用中很有用,例如帮助患有神经退行性问题的人;肌萎缩侧索硬化症(ALS)用于自动轮椅导航的多媒体应用等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信