An evaluation of NMF algorithm on human action video retrieval

F. Páez, Jorge A. Vanegas, F. González
{"title":"An evaluation of NMF algorithm on human action video retrieval","authors":"F. Páez, Jorge A. Vanegas, F. González","doi":"10.1109/STSIVA.2013.6644926","DOIUrl":null,"url":null,"abstract":"Human action video retrieval is a useful tool for video surveillance and sports video analysis, among other applications. Previous work on image retrieval tasks has shown that latent semantic methods are an effective way to build a high-level representation of data to discover implicit relations between visual patterns, achieving a significant improvement on these tasks. The current paper evaluates the applicability of Non-Negative Matrix Factorization (NMF), a latent semantic method, on human action video retrieval. Experiments are carried out on common human action recognition datasets using state-of-the-art descriptors. We focus on evaluating the query by example approach i.e. only videos are used as queries. The performance of the method is compared against classic direct matching between video features.","PeriodicalId":359994,"journal":{"name":"Symposium of Signals, Images and Artificial Vision - 2013: STSIVA - 2013","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium of Signals, Images and Artificial Vision - 2013: STSIVA - 2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STSIVA.2013.6644926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Human action video retrieval is a useful tool for video surveillance and sports video analysis, among other applications. Previous work on image retrieval tasks has shown that latent semantic methods are an effective way to build a high-level representation of data to discover implicit relations between visual patterns, achieving a significant improvement on these tasks. The current paper evaluates the applicability of Non-Negative Matrix Factorization (NMF), a latent semantic method, on human action video retrieval. Experiments are carried out on common human action recognition datasets using state-of-the-art descriptors. We focus on evaluating the query by example approach i.e. only videos are used as queries. The performance of the method is compared against classic direct matching between video features.
NMF算法在人体动作视频检索中的评价
人体动作视频检索是视频监控和体育视频分析等应用的有用工具。以往关于图像检索任务的研究表明,潜在语义方法是一种有效的方法来构建数据的高级表示,以发现视觉模式之间的隐式关系,在这些任务上取得了显著的进步。本文评价了一种潜在语义方法——非负矩阵分解(NMF)在人体动作视频检索中的适用性。使用最先进的描述符在常见的人类动作识别数据集上进行了实验。我们专注于通过示例方法评估查询,即仅使用视频作为查询。将该方法的性能与经典的视频特征直接匹配进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信