Modification of the structural and phase composition and mechanical properties of the Ti – C60 – Ti films implanted by boron ions

L. Baran
{"title":"Modification of the structural and phase composition and mechanical properties of the Ti – C60 – Ti films implanted by boron ions","authors":"L. Baran","doi":"10.30791/0015-3214-2022-3-5-13","DOIUrl":null,"url":null,"abstract":"Changes in the structure, phase composition, and mechanical properties of Ti – C60 – Ti films implanted with B+ ions (E = 80 keV, D = 1 1016 ion/cm2) after annealing in vacuum at temperature 570 K (3 hours) were studied by the methods of atomic force microscopy, X-ray diffraction and nanoindentation. The films were obtained by resistive evaporation in vacuum. Layers of titanium and C60 fullerite were sequentially deposited onto a substrate of oxidized single-crystal silicon. It has been established that during the condensation of the fullerite layer (h = 250 nm) on the underlying titanium layer (h = 120 nm), and then the titanium layer (h = 150 nm) on the fullerite layer, intense diffusion of titanium into the fullerite layer occurs. Implantation of titanium-fullerite-titanium films with boron ions leads to mixing of titanium and fullerite layers, while the size of structural elements increases in comparison with non-implanted films from 40 nm to 80 nm. Auger electron spectroscopy revealed that ion implantation results in an increase in the atomic fraction of oxygen in the films and the formation of a new TixOyC60 phase, which leads to an increase in the nanohardness of the mixed layers. The implanted Ti – C60 – Ti films were annealed in vacuum at T= 570 K for t = 3 h. Thermal annealing results in recrystallization of the fullerite phase and intensive growth of a new TixOyC60 phase with improved mechanical properties.","PeriodicalId":366423,"journal":{"name":"Physics and Chemistry of Materials Treatment","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Materials Treatment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30791/0015-3214-2022-3-5-13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Changes in the structure, phase composition, and mechanical properties of Ti – C60 – Ti films implanted with B+ ions (E = 80 keV, D = 1 1016 ion/cm2) after annealing in vacuum at temperature 570 K (3 hours) were studied by the methods of atomic force microscopy, X-ray diffraction and nanoindentation. The films were obtained by resistive evaporation in vacuum. Layers of titanium and C60 fullerite were sequentially deposited onto a substrate of oxidized single-crystal silicon. It has been established that during the condensation of the fullerite layer (h = 250 nm) on the underlying titanium layer (h = 120 nm), and then the titanium layer (h = 150 nm) on the fullerite layer, intense diffusion of titanium into the fullerite layer occurs. Implantation of titanium-fullerite-titanium films with boron ions leads to mixing of titanium and fullerite layers, while the size of structural elements increases in comparison with non-implanted films from 40 nm to 80 nm. Auger electron spectroscopy revealed that ion implantation results in an increase in the atomic fraction of oxygen in the films and the formation of a new TixOyC60 phase, which leads to an increase in the nanohardness of the mixed layers. The implanted Ti – C60 – Ti films were annealed in vacuum at T= 570 K for t = 3 h. Thermal annealing results in recrystallization of the fullerite phase and intensive growth of a new TixOyC60 phase with improved mechanical properties.
硼离子注入对Ti - C60 - Ti薄膜结构、相组成及力学性能的影响
采用原子力显微镜、x射线衍射和纳米压痕等方法研究了注入B+离子(E = 80 keV, D = 1 1016离子/cm2)的Ti - C60 - Ti薄膜在570 K(3小时)真空退火后的结构、相组成和力学性能的变化。薄膜采用真空电阻蒸发法制备。钛和C60富勒石层依次沉积在氧化单晶硅衬底上。研究发现,在富勒石层(h = 250 nm)凝结在下面的钛层(h = 120 nm)上,然后钛层(h = 150 nm)凝结在富勒石层上,钛向富勒石层内发生了强烈的扩散。硼离子注入钛-富勒石-钛薄膜后,钛层和富勒石层混合,结构元素尺寸较未注入薄膜增大,从40 nm增加到80 nm。俄歇电子能谱分析表明,离子注入导致薄膜中氧原子分数增加,形成新的TixOyC60相,导致混合层的纳米硬度增加。将注入的Ti - C60 - Ti薄膜在T= 570 K下真空退火3 h,热退火导致富勒石相的再结晶和新TixOyC60相的密集生长,力学性能得到改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信