ExtracTable: Extracting Tables from Raw Data Files

Leonardo Hübscher, Lan Jiang, Felix Naumann
{"title":"ExtracTable: Extracting Tables from Raw Data Files","authors":"Leonardo Hübscher, Lan Jiang, Felix Naumann","doi":"10.18420/BTW2023-20","DOIUrl":null,"url":null,"abstract":": Raw data, especially in text-files, comes in many shapes and forms, often tailored toward human readability. They include preambles and footnotes, are formatted visually, and in general do not follow csv-guidelines. The ability to easily ingest such files into data systems opens up many opportunities for data analysis and processing. With ExtracTable, we present a system that can automatically ingest a large variety of raw data files, including text files and poorly structured csv-files by detecting row patterns and thus separating their values into coherent columns. We manually annotated 957 files of a wide variety containing 1208 tables. We show experimentally that ExtracTable can correctly parse 90% of all lines in structured files and 76% of all lines in files with a visual layout only, significantly outperforming state-of-the-art.","PeriodicalId":421643,"journal":{"name":"Datenbanksysteme für Business, Technologie und Web","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Datenbanksysteme für Business, Technologie und Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18420/BTW2023-20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: Raw data, especially in text-files, comes in many shapes and forms, often tailored toward human readability. They include preambles and footnotes, are formatted visually, and in general do not follow csv-guidelines. The ability to easily ingest such files into data systems opens up many opportunities for data analysis and processing. With ExtracTable, we present a system that can automatically ingest a large variety of raw data files, including text files and poorly structured csv-files by detecting row patterns and thus separating their values into coherent columns. We manually annotated 957 files of a wide variety containing 1208 tables. We show experimentally that ExtracTable can correctly parse 90% of all lines in structured files and 76% of all lines in files with a visual layout only, significantly outperforming state-of-the-art.
ExtracTable:从原始数据文件中提取表
原始数据,特别是文本文件中的原始数据,有多种形状和形式,通常根据人类的可读性进行调整。它们包括前言和脚注,以视觉方式格式化,通常不遵循csv指南。将这些文件轻松地摄取到数据系统中的能力为数据分析和处理提供了许多机会。通过ExtracTable,我们提供了一个系统,它可以通过检测行模式并将它们的值分离到一致的列中,自动摄取大量的原始数据文件,包括文本文件和结构不良的csv文件。我们手动注释了957个文件,其中包含1208个表。我们通过实验证明,ExtracTable可以正确解析结构化文件中90%的所有行,以及仅使用视觉布局的文件中76%的所有行,显著优于目前的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信