Active learning for structured probabilistic models with histogram approximation

Q. Sun, A. Laddha, Dhruv Batra
{"title":"Active learning for structured probabilistic models with histogram approximation","authors":"Q. Sun, A. Laddha, Dhruv Batra","doi":"10.1109/CVPR.2015.7298984","DOIUrl":null,"url":null,"abstract":"This paper studies active learning in structured probabilistic models such as Conditional Random Fields (CRFs). This is a challenging problem because unlike unstructured prediction problems such as binary or multi-class classification, structured prediction problems involve a distribution with an exponentially-large support, for instance, over the space of all possible segmentations of an image. Thus, the entropy of such models is typically intractable to compute. We propose a crude yet surprisingly effective histogram approximation to the Gibbs distribution, which replaces the exponentially-large support with a coarsened distribution that may be viewed as a histogram over M bins. We show that our approach outperforms a number of baselines and results in a 90%-reduction in the number of annotations needed to achieve nearly the same accuracy as learning from the entire dataset.","PeriodicalId":444472,"journal":{"name":"2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2015.7298984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

This paper studies active learning in structured probabilistic models such as Conditional Random Fields (CRFs). This is a challenging problem because unlike unstructured prediction problems such as binary or multi-class classification, structured prediction problems involve a distribution with an exponentially-large support, for instance, over the space of all possible segmentations of an image. Thus, the entropy of such models is typically intractable to compute. We propose a crude yet surprisingly effective histogram approximation to the Gibbs distribution, which replaces the exponentially-large support with a coarsened distribution that may be viewed as a histogram over M bins. We show that our approach outperforms a number of baselines and results in a 90%-reduction in the number of annotations needed to achieve nearly the same accuracy as learning from the entire dataset.
基于直方图近似的结构化概率模型主动学习
本文研究了结构化概率模型(如条件随机场)中的主动学习问题。这是一个具有挑战性的问题,因为与二元或多类分类等非结构化预测问题不同,结构化预测问题涉及具有指数级支持的分布,例如,在图像的所有可能分割的空间上。因此,这种模型的熵通常难以计算。我们对吉布斯分布提出了一个粗糙但令人惊讶的有效的直方图近似,它用一个可以被视为M个箱的直方图的粗化分布取代了指数级大的支持。我们表明,我们的方法优于许多基线,并且可以减少90%的注释数量,从而达到与从整个数据集学习几乎相同的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信