Quantum neural network for State of Charge estimation

Kevin Gausultan Hadith Mangunkusumo, K. Lian, F. D. Wijaya, Y.-R Chang, Y. D. Lee, Y. Ho
{"title":"Quantum neural network for State of Charge estimation","authors":"Kevin Gausultan Hadith Mangunkusumo, K. Lian, F. D. Wijaya, Y.-R Chang, Y. D. Lee, Y. Ho","doi":"10.1109/ICITEED.2014.7007948","DOIUrl":null,"url":null,"abstract":"State of Charge (SoC) estimation is one of the most important parts of Battery Management System (BMS). Inaccurate estimation of SoC may cause overcharge or overdischarge which could lead permanent damage to battery cells. Neural Network (NN) models can yield quite accurate SoC estimation. However, the computation effort is also quite huge and it takes long time training. To improve the performance of NN, a new battery SoC estimation method based on Quantum Neural Network (QNN) is proposed. Results show that QNN is more computation efficient and yields more accurate results, when compared to the conventional NN and other methods such as Coulometric Counting (CC) and Open Circuit Voltage (OCV) prediction methods.","PeriodicalId":148115,"journal":{"name":"2014 6th International Conference on Information Technology and Electrical Engineering (ICITEE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 6th International Conference on Information Technology and Electrical Engineering (ICITEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITEED.2014.7007948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

State of Charge (SoC) estimation is one of the most important parts of Battery Management System (BMS). Inaccurate estimation of SoC may cause overcharge or overdischarge which could lead permanent damage to battery cells. Neural Network (NN) models can yield quite accurate SoC estimation. However, the computation effort is also quite huge and it takes long time training. To improve the performance of NN, a new battery SoC estimation method based on Quantum Neural Network (QNN) is proposed. Results show that QNN is more computation efficient and yields more accurate results, when compared to the conventional NN and other methods such as Coulometric Counting (CC) and Open Circuit Voltage (OCV) prediction methods.
电荷状态估计的量子神经网络
电池荷电状态(SoC)估计是电池管理系统(BMS)的重要组成部分之一。不准确的SoC估计可能会导致过充电或过放电,从而导致电池的永久性损坏。神经网络(NN)模型可以产生相当精确的SoC估计。然而,计算量也非常大,并且需要很长时间的训练。为了提高神经网络的性能,提出了一种基于量子神经网络(QNN)的电池SoC估计方法。结果表明,与传统神经网络和其他方法(如库仑计数(CC)和开路电压(OCV)预测方法)相比,QNN具有更高的计算效率和更准确的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信