Compressive sensing with weighted coefficient approach for indoor source localization

Rana Ramadan, Arwa M. J. Jwaifel, H. Al-Tous, I. Barhumi
{"title":"Compressive sensing with weighted coefficient approach for indoor source localization","authors":"Rana Ramadan, Arwa M. J. Jwaifel, H. Al-Tous, I. Barhumi","doi":"10.1109/TSP.2017.8075978","DOIUrl":null,"url":null,"abstract":"In this work, indoor sensor localization is investigated based on the received-signal-strength-indicator (RSSI) using the compressive sensing (CS) framework. The fingerprints of several ZigBee base-stations are used to construct the dictionary matrix. We propose a weighted-coefficient-approach (WCA) to determine the sensor position based on the solution of the CS problem. Numerical simulations and experiments are conducted to show that the proposed WCA outperforms the conventional CS-based approach for source localization. Numerical results demonstrate that the WCA can be used to determine the sensor position with high accuracy.","PeriodicalId":256818,"journal":{"name":"2017 40th International Conference on Telecommunications and Signal Processing (TSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 40th International Conference on Telecommunications and Signal Processing (TSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSP.2017.8075978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this work, indoor sensor localization is investigated based on the received-signal-strength-indicator (RSSI) using the compressive sensing (CS) framework. The fingerprints of several ZigBee base-stations are used to construct the dictionary matrix. We propose a weighted-coefficient-approach (WCA) to determine the sensor position based on the solution of the CS problem. Numerical simulations and experiments are conducted to show that the proposed WCA outperforms the conventional CS-based approach for source localization. Numerical results demonstrate that the WCA can be used to determine the sensor position with high accuracy.
基于加权系数压缩感知的室内源定位方法
在这项工作中,利用压缩感知(CS)框架研究了基于接收信号强度指示器(RSSI)的室内传感器定位。使用多个ZigBee基站的指纹来构建字典矩阵。我们提出了一种基于CS问题求解的加权系数法(WCA)来确定传感器位置。数值模拟和实验结果表明,该方法优于传统的基于cs的源定位方法。数值计算结果表明,WCA可以很好地确定传感器的位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信