Spiking neural network applications

Gaffari Çelik, M. F. Talu
{"title":"Spiking neural network applications","authors":"Gaffari Çelik, M. F. Talu","doi":"10.1109/IDAP.2017.8090266","DOIUrl":null,"url":null,"abstract":"Spiking Neural Network (SNN) are 3rd Generation Artificial Neural Networks (ANN) models. The fact that time information is processed in the form of spikes and there are multiple synapses between cells (neurons) are the most important features that distinguish SNN from previous generations. In this study, artificial learning systems which can learn by using basic logical operators such as AND, OR, XOR have been developed in order to understand SNN structure. In SNN, we tried to find optimal values for these parameters by examining the effect of the number of connections between cells and delays between connections to learning success.","PeriodicalId":111721,"journal":{"name":"2017 International Artificial Intelligence and Data Processing Symposium (IDAP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Artificial Intelligence and Data Processing Symposium (IDAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDAP.2017.8090266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Spiking Neural Network (SNN) are 3rd Generation Artificial Neural Networks (ANN) models. The fact that time information is processed in the form of spikes and there are multiple synapses between cells (neurons) are the most important features that distinguish SNN from previous generations. In this study, artificial learning systems which can learn by using basic logical operators such as AND, OR, XOR have been developed in order to understand SNN structure. In SNN, we tried to find optimal values for these parameters by examining the effect of the number of connections between cells and delays between connections to learning success.
尖峰神经网络的应用
尖峰神经网络(SNN)是第三代人工神经网络(ANN)模型。以尖峰形式处理时间信息以及细胞(神经元)之间存在多个突触是 SNN 区别于前几代的最重要特征。在本研究中,为了理解 SNN 结构,我们开发了可以通过 AND、OR、XOR 等基本逻辑运算符进行学习的人工学习系统。在 SNN 中,我们试图通过研究细胞之间的连接数和连接延迟对学习成功的影响,找到这些参数的最佳值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信