Mu-Cheng Wang, Shin-Dug Kim, M. A. Nichols, R. F. Freund, H. Siegel, W. Nation
{"title":"Augmenting the Optimal Selection Theory for Superconcurrency","authors":"Mu-Cheng Wang, Shin-Dug Kim, M. A. Nichols, R. F. Freund, H. Siegel, W. Nation","doi":"10.1109/WHP.1992.664380","DOIUrl":null,"url":null,"abstract":"An approach for jinding the optimal configuration of heterogeneous computer systems to solve supercomputing problem is presented. Superconcurrency as a form of distributed heterogeneous supercomputing is an approach for matching and managing an optimally configured suite of super-speed machines to minimize the execution time on a given task. The approach performs best when the computational requirements for a given set of tasks are diverse. A supercomputing application task is decomposed into a collection of code segments, where the processing requirement is homogeneous in each code segment. The optimal selection theory has been proposed to choose the optimal configuration of machines for a supercomputing problem. This technique is based on code projiling and analytical benchmarking. Here, the previously presented optimal selection theory approach is augmented in two ways: the performance of code segments on non-optimal machine choices is incorporated and non-uniform &compositions of code segments are considered.","PeriodicalId":201815,"journal":{"name":"Proceedings. Workshop on Heterogeneous Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Workshop on Heterogeneous Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHP.1992.664380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 66
Abstract
An approach for jinding the optimal configuration of heterogeneous computer systems to solve supercomputing problem is presented. Superconcurrency as a form of distributed heterogeneous supercomputing is an approach for matching and managing an optimally configured suite of super-speed machines to minimize the execution time on a given task. The approach performs best when the computational requirements for a given set of tasks are diverse. A supercomputing application task is decomposed into a collection of code segments, where the processing requirement is homogeneous in each code segment. The optimal selection theory has been proposed to choose the optimal configuration of machines for a supercomputing problem. This technique is based on code projiling and analytical benchmarking. Here, the previously presented optimal selection theory approach is augmented in two ways: the performance of code segments on non-optimal machine choices is incorporated and non-uniform &compositions of code segments are considered.