A Novel Framework for Ranking Model Adaptation

Peng Cai, Aoying Zhou
{"title":"A Novel Framework for Ranking Model Adaptation","authors":"Peng Cai, Aoying Zhou","doi":"10.1109/WISA.2010.12","DOIUrl":null,"url":null,"abstract":"Domain adaptation is an important problem in learning to rank due to the lack of training data in a new search task. Recently, an approach based on instance weighting and pairwise ranking algorithms has been proposed to address the problem by learning a ranking model for a target domain only using training data from a source domain. In this paper, we propose a novel framework which extends the previous work using a listwise ranking algorithm for ranking adaptation. Our framework firstly estimates the importance weight of a query in the source domain. Then, the importance weight is incorporated into the state-of-the-art listwise ranking algorithm, known as AdaRank. The framework is evaluated on the Letor3.0 benchmark dataset. The results of experiment demonstrate that it can significantly outperform the baseline model which is directly trained on the source domain, and most of the time not significantly worse than the optimal model which is trained on the target domain.","PeriodicalId":122827,"journal":{"name":"2010 Seventh Web Information Systems and Applications Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Seventh Web Information Systems and Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISA.2010.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Domain adaptation is an important problem in learning to rank due to the lack of training data in a new search task. Recently, an approach based on instance weighting and pairwise ranking algorithms has been proposed to address the problem by learning a ranking model for a target domain only using training data from a source domain. In this paper, we propose a novel framework which extends the previous work using a listwise ranking algorithm for ranking adaptation. Our framework firstly estimates the importance weight of a query in the source domain. Then, the importance weight is incorporated into the state-of-the-art listwise ranking algorithm, known as AdaRank. The framework is evaluated on the Letor3.0 benchmark dataset. The results of experiment demonstrate that it can significantly outperform the baseline model which is directly trained on the source domain, and most of the time not significantly worse than the optimal model which is trained on the target domain.
一种新的排序模型自适应框架
由于新的搜索任务缺乏训练数据,领域自适应成为学习排序的一个重要问题。最近,人们提出了一种基于实例加权和成对排序算法的方法,通过仅使用源域的训练数据来学习目标域的排序模型来解决这一问题。在本文中,我们提出了一个新的框架,它扩展了以前的工作,使用列表排序算法进行排名自适应。我们的框架首先估计查询在源域中的重要性权重。然后,将重要性权重纳入最先进的列表排序算法,即AdaRank。该框架在Letor3.0基准数据集上进行了评估。实验结果表明,该方法可以显著优于直接在源域上训练的基线模型,大多数情况下不显著低于在目标域上训练的最优模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信