System ST /spl beta/-reduction and completeness

Christophe Raffalli
{"title":"System ST /spl beta/-reduction and completeness","authors":"Christophe Raffalli","doi":"10.1109/LICS.2003.1210041","DOIUrl":null,"url":null,"abstract":"We prove that system ST (introduced in a previous work) enjoys subject reduction and is complete for realizability semantics. As far as the author knows, this is the only type system enjoying the second property. System ST is a very expressive type system, whose principle is to use two kinds of formulae: types (formulae with algorithmic content) and propositions (formulae without algorithmic content). The fact that subtyping is used to build propositions and that propositions can be used in types through a special implication gives its great expressive power to the system: all the operators you can imagine are definable (union, intersection, singleton, ...).","PeriodicalId":280809,"journal":{"name":"18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2003.1210041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We prove that system ST (introduced in a previous work) enjoys subject reduction and is complete for realizability semantics. As far as the author knows, this is the only type system enjoying the second property. System ST is a very expressive type system, whose principle is to use two kinds of formulae: types (formulae with algorithmic content) and propositions (formulae without algorithmic content). The fact that subtyping is used to build propositions and that propositions can be used in types through a special implication gives its great expressive power to the system: all the operators you can imagine are definable (union, intersection, singleton, ...).
系统ST /spl beta/-降低和完整性
我们证明了系统ST(在以前的工作中引入)具有主题约简并且在可实现语义上是完整的。据笔者所知,这是唯一具有第二属性的类型制度。系统ST是一个非常具有表现力的类型系统,其原理是使用两种公式:类型(包含算法内容的公式)和命题(不包含算法内容的公式)。子类型用于构建命题,并且命题可以通过特殊的含义在类型中使用,这一事实赋予了系统强大的表达能力:您可以想象的所有操作符都是可定义的(联合、交集、单例等)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信