Context-aware cognitive radio using deep learning

Francisco Paisana, Ahmed A. S. Seleim, Maicon Kist, Pedro Alvarez, J. Tallon, Christian Blümm, André Puschmann, L. Dasilva
{"title":"Context-aware cognitive radio using deep learning","authors":"Francisco Paisana, Ahmed A. S. Seleim, Maicon Kist, Pedro Alvarez, J. Tallon, Christian Blümm, André Puschmann, L. Dasilva","doi":"10.1109/DySPAN.2017.7920784","DOIUrl":null,"url":null,"abstract":"This paper describes the design, experimental assessmant and Software Defined Radio (SDR) implementation of a Secondary User (SU) link for the IEEE DySPAN Challenge 2017. The objective is to successfully discern the behavior of and coexist with a Primary User (PU), whose channel access patterns vary over time. For that end, we utilize sensing, deep learning and dynamic optimization.","PeriodicalId":221877,"journal":{"name":"2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DySPAN.2017.7920784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

This paper describes the design, experimental assessmant and Software Defined Radio (SDR) implementation of a Secondary User (SU) link for the IEEE DySPAN Challenge 2017. The objective is to successfully discern the behavior of and coexist with a Primary User (PU), whose channel access patterns vary over time. For that end, we utilize sensing, deep learning and dynamic optimization.
使用深度学习的情境感知认知无线电
本文介绍了用于IEEE DySPAN挑战赛2017的辅助用户(SU)链路的设计、实验评估和软件定义无线电(SDR)实现。目标是成功地识别主用户(PU)的行为并与之共存,主用户的通道访问模式随时间而变化。为此,我们利用传感、深度学习和动态优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信