Normalized Gaussian Distance Graph Cuts for Image Segmentation

Chengcai Leng, W. Xu, I. Cheng, Z. Xiong, A. Basu
{"title":"Normalized Gaussian Distance Graph Cuts for Image Segmentation","authors":"Chengcai Leng, W. Xu, I. Cheng, Z. Xiong, A. Basu","doi":"10.1109/ISM.2015.36","DOIUrl":null,"url":null,"abstract":"This paper presents a novel, fast image segmentation method based on normalized Gaussian distance on nodes in conjunction with normalized graph cuts. We review the equivalence between kernel k-means and normalized cuts. Then we extend the framework of efficient spectral clustering and avoid choosing weights in the weighted graph cuts approach. Experiments on synthetic data sets and real-world images demonstrate that the proposed method is effective and accurate.","PeriodicalId":250353,"journal":{"name":"2015 IEEE International Symposium on Multimedia (ISM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Multimedia (ISM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2015.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a novel, fast image segmentation method based on normalized Gaussian distance on nodes in conjunction with normalized graph cuts. We review the equivalence between kernel k-means and normalized cuts. Then we extend the framework of efficient spectral clustering and avoid choosing weights in the weighted graph cuts approach. Experiments on synthetic data sets and real-world images demonstrate that the proposed method is effective and accurate.
归一化高斯距离图切割图像分割
本文提出了一种基于节点归一化高斯距离并结合归一化图割的快速图像分割方法。我们回顾了核k-均值和归一化切之间的等价性。然后,我们扩展了高效谱聚类的框架,避免了在加权图切方法中选择权值。在合成数据集和真实图像上的实验证明了该方法的有效性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信