{"title":"Circuit walks in integral polyhedra","authors":"Steffen Borgwardt, Charles Viss","doi":"10.1016/j.disopt.2019.100566","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Circuits play a fundamental role in the theory of linear programming due to their intimate connection to algorithms of combinatorial optimization and the efficiency of the simplex method<span>. We are interested in better understanding the properties of circuit walks in integral polyhedra. In this paper, we introduce a hierarchy for integral polyhedra based on different types of behavior exhibited by their circuit walks. Many problems in combinatorial optimization fall into the most interesting categories of this hierarchy — steps of circuit walks only stop at </span></span>integer points, at vertices, or follow actual edges. We classify several classical families of polyhedra within the hierarchy, including </span><span><math><mrow><mn>0</mn><mo>/</mo><mn>1</mn></mrow></math></span><span>-polytopes, polyhedra defined by totally unimodular matrices, and more specifically matroid polytopes, transportation polytopes, and partition polytopes. Finally, we prove three characterizations of the simple polytopes that appear in the bottom level of the hierarchy where all circuit walks are edge walks, showing that such polytopes constitute a generalization of simplices and parallelotopes.</span></p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"44 ","pages":"Article 100566"},"PeriodicalIF":0.9000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.disopt.2019.100566","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528619301665","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 7
Abstract
Circuits play a fundamental role in the theory of linear programming due to their intimate connection to algorithms of combinatorial optimization and the efficiency of the simplex method. We are interested in better understanding the properties of circuit walks in integral polyhedra. In this paper, we introduce a hierarchy for integral polyhedra based on different types of behavior exhibited by their circuit walks. Many problems in combinatorial optimization fall into the most interesting categories of this hierarchy — steps of circuit walks only stop at integer points, at vertices, or follow actual edges. We classify several classical families of polyhedra within the hierarchy, including -polytopes, polyhedra defined by totally unimodular matrices, and more specifically matroid polytopes, transportation polytopes, and partition polytopes. Finally, we prove three characterizations of the simple polytopes that appear in the bottom level of the hierarchy where all circuit walks are edge walks, showing that such polytopes constitute a generalization of simplices and parallelotopes.
期刊介绍:
Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.