Deep Learning on Automatic Fall Detection

Sara Monteiro, Argentina Leite, E. J. S. Pires
{"title":"Deep Learning on Automatic Fall Detection","authors":"Sara Monteiro, Argentina Leite, E. J. S. Pires","doi":"10.1109/LA-CCI48322.2021.9769783","DOIUrl":null,"url":null,"abstract":"Nowadays, independent older people stay alone for long periods, which increases the risk of being seriously damaged after a fall without the quick attendance of medical services. Several smart clothing equipment was created to detect these falls using sensors such as accelerometers and gyroscopes, allowing a short intervention to the victims. This work considers the Sisfall database, where 23 adults and 15 older people performed several daily living simulations. The signals registered by three sensors were used to train a Long Short-Term Memory network and a Bi-Long Short-Term Memory network to detect everyday activities and falls. Several experiments were performed, where the BiLSTM model outperforms the LSTM model with a mean accuracy of 99.21% on the testing set.","PeriodicalId":431041,"journal":{"name":"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LA-CCI48322.2021.9769783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, independent older people stay alone for long periods, which increases the risk of being seriously damaged after a fall without the quick attendance of medical services. Several smart clothing equipment was created to detect these falls using sensors such as accelerometers and gyroscopes, allowing a short intervention to the victims. This work considers the Sisfall database, where 23 adults and 15 older people performed several daily living simulations. The signals registered by three sensors were used to train a Long Short-Term Memory network and a Bi-Long Short-Term Memory network to detect everyday activities and falls. Several experiments were performed, where the BiLSTM model outperforms the LSTM model with a mean accuracy of 99.21% on the testing set.
基于深度学习的自动跌倒检测
如今,独立的老年人长时间独自生活,这增加了跌倒后受到严重伤害的风险,而没有及时的医疗服务。设计了几种智能服装设备,利用加速度计和陀螺仪等传感器来检测这些跌倒,从而对受害者进行短暂的干预。这项工作考虑了Sisfall数据库,其中有23名成年人和15名老年人进行了几次日常生活模拟。三个传感器记录的信号被用来训练长短期记忆网络和双长短期记忆网络,以检测日常活动和跌倒。经过多次实验,BiLSTM模型在测试集上的平均准确率达到99.21%,优于LSTM模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信