Formulae

Marc Anders
{"title":"Formulae","authors":"Marc Anders","doi":"10.31440/dftb.3746","DOIUrl":null,"url":null,"abstract":"Vectors: A = Axi + Ayj + Azk Scalar Product (“Dot” Product) A·B = AxBx + AyBy + AzBz = AB cosθA,B= AB// = A//B Vector Product (“Cross” Product) direction: “right-hand rule” A×B = (AyBz–AzBy)i +(AzBx–AxBz)j +(AxBy–AyBx)k = |A×B| = AB sinθA,B= AB⊥ = A⊥B Kinematics: the “motion”: position s as function of time t s = s(t) (position) velocity v; acceleration a: v ≡ ds/dt (speed ≡ |v|); a ≡ dv/dt Linear motion with constant a: v = v0 + at, s = s0 +v0t + 1⁄2at; eliminating t: v = v0 + 2a·(s – s0) rotation angle θ (radians; rotation radius R): θ ≡ s(=arc length)/R = θ(t) (angular position) angular velocity ω ; angular acceleration α : ω ≡ vT/R ; α ≡ aT/R (T = Tangential) Circular motion (radius R) with constant α: ω = ω0 + αt; θ = θ0 +ω0t + 1⁄2αt; eliminating t: ω = ω0 + 2α(θ –θ0) circular motion – radial acceleration arad: arad = ac = vT/R (radially inwards) Center-of-Mass position of system (mass M) rcm≡Σjmjrj/Σjmj=Σjmjrj/M=∫rdm/M, vcm=Σjmjvj/M Moment of Inertia I: I ≡ Σmiri = ∫rdm; ri(r) = distance between rotation axis and mi(dm) thin uniform rod (M, L), axis ⊥ rod through cm: I = ML/12 hollow cylinder (M, Rin, Rout), axis is cylinder axis: I = 1⁄2 M(Rin+Rout) uniform solid sphere (M, R), axis through center: I = 2MR/5 Parallel-Axis Theorem I = I//,cm + Md (d=distance between the parallel axes) Perpendicular-Axis Theorem for a Planar (=flat) body in the x-y plane: Iz = Ix + Iy Momentum p p ≡ Σimivi = Mvcm Angular Momentum L L ≡ ΣjRj×mjvj (= Iω for rotation around symmetry axis) Moving axis: Ktot ≡ 1⁄2 mvcm + 1⁄2 Icmωcm Kinetic Energy K [J≡Nm]: Fixed axis A: Krot,A ≡ 1⁄2 IAωA Forces [N≡kgm/s] and consequences: ΣjFj = dp/dt = ma; FA on B = –FB on A ; Σjτj = dL/dt = Iα Force of Gravity between M and m, at center-to-center distance r FG = GMm/r (–r) (attractive! G=6.67×10 Nm/kg); near sea level: FG = mg(–j) (downwards; g=9.80 m/s) Force of a Spring (spring constant k): FS = –kx (opposes compression/stretch x) Friction: static: Ff ≤ μsN, kinetic: Ff = μkN, opposes motion; μ=frict’n coef.; N=normal force Torque: τ ≡ R×F (τ = RFsinθR,F; direction: right-hand rule) Equilibrium & Collisions: if ΣjFj = dptot/dt = 0 ⇒ Δptot = 0; if Σjτj = dLtot/dt = 0 ⇒ ΔLtot = 0 Elastic: K is conserved; Completely Inelastic: objects stick together afterwards Impulse by a force F over a time interval: JF ≡ ∫Fdt Work done by a force F over a trajectory: WF ≡ ∫F⋅dx Work done by a torque τF over a rotation angle θ: WF ≡ ∫τF ⋅dθ Work-Kinetic Energy relationship (from ΣFj= ma): Wtot = ΣjWj = ΔK ≡ Kf – Ki Power P [W≡J/s]: PF ≡ dWF/dt = F·v = τF·ω Potential Energy U of a conservative force F: UF = –WF ; e.g. UG = –GMm/r, US = 1⁄2kx Work by Non-Conservative forces Total Energy: WNC.= ΔE = Ef –Ei ≡ Kf +ΣjUfj – (Ki+ΣjUij) x A y z A A","PeriodicalId":329601,"journal":{"name":"Spon's Architect's and Builders' Price Book 2016","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spon's Architect's and Builders' Price Book 2016","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31440/dftb.3746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Vectors: A = Axi + Ayj + Azk Scalar Product (“Dot” Product) A·B = AxBx + AyBy + AzBz = AB cosθA,B= AB// = A//B Vector Product (“Cross” Product) direction: “right-hand rule” A×B = (AyBz–AzBy)i +(AzBx–AxBz)j +(AxBy–AyBx)k = |A×B| = AB sinθA,B= AB⊥ = A⊥B Kinematics: the “motion”: position s as function of time t s = s(t) (position) velocity v; acceleration a: v ≡ ds/dt (speed ≡ |v|); a ≡ dv/dt Linear motion with constant a: v = v0 + at, s = s0 +v0t + 1⁄2at; eliminating t: v = v0 + 2a·(s – s0) rotation angle θ (radians; rotation radius R): θ ≡ s(=arc length)/R = θ(t) (angular position) angular velocity ω ; angular acceleration α : ω ≡ vT/R ; α ≡ aT/R (T = Tangential) Circular motion (radius R) with constant α: ω = ω0 + αt; θ = θ0 +ω0t + 1⁄2αt; eliminating t: ω = ω0 + 2α(θ –θ0) circular motion – radial acceleration arad: arad = ac = vT/R (radially inwards) Center-of-Mass position of system (mass M) rcm≡Σjmjrj/Σjmj=Σjmjrj/M=∫rdm/M, vcm=Σjmjvj/M Moment of Inertia I: I ≡ Σmiri = ∫rdm; ri(r) = distance between rotation axis and mi(dm) thin uniform rod (M, L), axis ⊥ rod through cm: I = ML/12 hollow cylinder (M, Rin, Rout), axis is cylinder axis: I = 1⁄2 M(Rin+Rout) uniform solid sphere (M, R), axis through center: I = 2MR/5 Parallel-Axis Theorem I = I//,cm + Md (d=distance between the parallel axes) Perpendicular-Axis Theorem for a Planar (=flat) body in the x-y plane: Iz = Ix + Iy Momentum p p ≡ Σimivi = Mvcm Angular Momentum L L ≡ ΣjRj×mjvj (= Iω for rotation around symmetry axis) Moving axis: Ktot ≡ 1⁄2 mvcm + 1⁄2 Icmωcm Kinetic Energy K [J≡Nm]: Fixed axis A: Krot,A ≡ 1⁄2 IAωA Forces [N≡kgm/s] and consequences: ΣjFj = dp/dt = ma; FA on B = –FB on A ; Σjτj = dL/dt = Iα Force of Gravity between M and m, at center-to-center distance r FG = GMm/r (–r) (attractive! G=6.67×10 Nm/kg); near sea level: FG = mg(–j) (downwards; g=9.80 m/s) Force of a Spring (spring constant k): FS = –kx (opposes compression/stretch x) Friction: static: Ff ≤ μsN, kinetic: Ff = μkN, opposes motion; μ=frict’n coef.; N=normal force Torque: τ ≡ R×F (τ = RFsinθR,F; direction: right-hand rule) Equilibrium & Collisions: if ΣjFj = dptot/dt = 0 ⇒ Δptot = 0; if Σjτj = dLtot/dt = 0 ⇒ ΔLtot = 0 Elastic: K is conserved; Completely Inelastic: objects stick together afterwards Impulse by a force F over a time interval: JF ≡ ∫Fdt Work done by a force F over a trajectory: WF ≡ ∫F⋅dx Work done by a torque τF over a rotation angle θ: WF ≡ ∫τF ⋅dθ Work-Kinetic Energy relationship (from ΣFj= ma): Wtot = ΣjWj = ΔK ≡ Kf – Ki Power P [W≡J/s]: PF ≡ dWF/dt = F·v = τF·ω Potential Energy U of a conservative force F: UF = –WF ; e.g. UG = –GMm/r, US = 1⁄2kx Work by Non-Conservative forces Total Energy: WNC.= ΔE = Ef –Ei ≡ Kf +ΣjUfj – (Ki+ΣjUij) x A y z A A
公式
向量:A = Axi + Ayj + Azk标量积(“点”积)A·B = AxBx + AyBy + AzBz = AB cost θA,B= AB// = A//B向量积(“叉”积)方向:“右手法则”A×B = (AyBz-AzBy)i +(AzBx-AxBz)j +(AxBy-AyBx)k = |A×B| = AB sinθA,B= AB⊥= A⊥运动学:“运动”:位置s作为时间t的函数s = s(t)(位置)速度v;加速度a: v≡ds/dt(速度≡|v|);a≡dv/dt恒定a时的直线运动:v = v0 + at, s = 50 +v0t + 1 / 2at;消去t: v = v0 + 2a·(s - 50)旋转角θ(弧度;旋转半径R): θ≡s(=弧长)/R = θ(t)(角位置)角速度ω;角加速度α: ω≡vT/R;α≡aT/R (T =切向)以常数α为半径R的圆周运动:ω = ω0 + α T;θ = θ0 +ω0t + 1 / 2αt;消除t: ω = ω0 + 2α(θ - θ0)圆周运动-径向加速度arad: arad = ac = vT/R(径向向内)系统质心位置(质量M) rcm≡Σjmjrj/Σjmj=Σjmjrj/M=∫rdm/M, vcm=Σjmjvj/M转动惯量I: I≡Σmiri =∫rdm;ri(r) =旋转轴与mi(dm)之间的距离薄均匀棒(M, L),轴⊥棒通过cm: I = ML/12空心圆柱体(M, Rin, Rout),轴是圆柱体轴:I = 1 / 2M (Rin+Rout)均匀实心球(M, r),轴通过中心:I = 2MR/5平行轴定理I = I//,cm + Md (d=平行轴之间的距离)垂直轴定理在x-y平面上的平面(=平坦)体:Iz = Ix + Iy动量p p≡Σimivi = Mvcm角动量L L≡ΣjRj×mjvj (= Iω绕对称轴旋转)运动轴:Ktot≡1⁄2 Mvcm + 1⁄2 Icmωcm动能K [J≡Nm]:固定轴A: Krot,A≡1⁄2 iaa ωA力[N≡kgm/s]和结果:ΣjFj = dp/dt = ma;FA对B = -FB对A;Σjτj = dL/dt = Iα M和M之间的引力,在中心到中心的距离r FG = GMm/r (-r)(吸引!G = 6.67×10 Nm /公斤);近海平面:FG = mg(-j)(向下;g=9.80 m/s)弹簧力(弹簧常数k): FS = -kx(反压缩/反拉伸x)摩擦力:静力:Ff≤μsN,动能:Ff = μkN,反运动;μ= frict重要的系数。扭矩:τ≡R×F (τ = RFsinθR,F;平衡与碰撞:如果ΣjFj = dptot/dt = 0⇒Δptot = 0;如果Σjτj = dltt /dt = 0⇒ΔLtot = 0弹性:K是守恒的;完全非弹性:物体粘在一起后来脉冲力F /时间间隔:摩根富林明≡∫Fdt工作由一个力F /轨迹:WF≡∫⋅dx工作由扭矩τF在旋转角度θ:WF≡∫τF⋅dθWork-Kinetic能源关系(从ΣFj = ma): Wtot =ΣjWj =ΔK≡Kf - Ki功率P [W≡J / s]: PF≡dWF / dt = F·U v = F·ωτ势能的保守力F:佛罗里达大学= WF;例如UG = -GMm /r, US = 1 / 2kx非保守力做功总能量:WNC。= ΔE = Ef - ei≡Kf +ΣjUfj - (Ki+ΣjUij) x A y z A A
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信