Color Image Denoising via Tensor Robust PCA with Nonconvex and Nonlocal Regularization

Xiaoyu Geng, Q. Guo, Cai-ming Zhang
{"title":"Color Image Denoising via Tensor Robust PCA with Nonconvex and Nonlocal Regularization","authors":"Xiaoyu Geng, Q. Guo, Cai-ming Zhang","doi":"10.1145/3469877.3493592","DOIUrl":null,"url":null,"abstract":"Tensor robust principal component analysis (TRPCA) is an important algorithm for color image denoising by treating the whole image as a tensor and shrinking all singular values equally. In this paper, to improve the denoising performance of TRPCA, we propose a variant of TRPCA model. Specifically, we first introduce a nonconvex TRPCA (N-TRPCA) model which can shrink large singular values more and shrink small singular values less, so that the physical meanings of different singular values can be preserved. To take advantage of the structural redundancy of an image, we further group similar patches as a tensor according to nonlocal prior, and then apply the N-TRPCA model on this tensor. The denoised image can be obtained by aggregating all processed tensors. Experimental results demonstrate the superiority of the proposed denoising method beyond state-of-the-arts.","PeriodicalId":210974,"journal":{"name":"ACM Multimedia Asia","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Multimedia Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469877.3493592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tensor robust principal component analysis (TRPCA) is an important algorithm for color image denoising by treating the whole image as a tensor and shrinking all singular values equally. In this paper, to improve the denoising performance of TRPCA, we propose a variant of TRPCA model. Specifically, we first introduce a nonconvex TRPCA (N-TRPCA) model which can shrink large singular values more and shrink small singular values less, so that the physical meanings of different singular values can be preserved. To take advantage of the structural redundancy of an image, we further group similar patches as a tensor according to nonlocal prior, and then apply the N-TRPCA model on this tensor. The denoised image can be obtained by aggregating all processed tensors. Experimental results demonstrate the superiority of the proposed denoising method beyond state-of-the-arts.
基于非凸非局部正则化张量鲁棒PCA的彩色图像去噪
张量鲁棒主成分分析(TRPCA)是一种重要的彩色图像去噪算法,它将整个图像作为一个张量,并将所有奇异值相等地缩小。为了提高TRPCA的去噪性能,本文提出了一种TRPCA模型的变体。具体而言,我们首先引入了一种非凸TRPCA (N-TRPCA)模型,该模型可以对大奇异值进行更多的收缩,对小奇异值进行更少的收缩,从而保持不同奇异值的物理意义。为了利用图像的结构冗余性,我们进一步根据非局部先验将相似的patch分组为一个张量,然后对该张量应用N-TRPCA模型。将处理后的张量进行汇总,得到去噪后的图像。实验结果表明,所提出的去噪方法具有较好的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信