Effective Computational Techniques for Generating Electroencephalogram Data

Mahmoud Elsayed, K. Sim, Shing Chiang Tan
{"title":"Effective Computational Techniques for Generating Electroencephalogram Data","authors":"Mahmoud Elsayed, K. Sim, Shing Chiang Tan","doi":"10.1109/ICOASE51841.2020.9436591","DOIUrl":null,"url":null,"abstract":"The complexity of the electroencephalogram makes it a significant challenge for physicians and engineers to extract useful information from, process, and classify the electroencephalogram signals. Moreover, the difficulty in conducting clinical experimentation limits the collection of a sufficient number of electroencephalogram data samples for further processing using advanced computational techniques such as deep learning. This complexity and difficulty together with the inflexibility and the subtle linearity of the traditional signal processing techniques motivate us to find innovative techniques to address the problem of insufficient electroencephalogram data. In this paper, a number of computational and statistical techniques to generate electroencephalogram data from a previously done experiment on 30 healthy participants experiencing painful stimuli are applied. We believe this application will benefit the research in the field of biomedical signal processing.","PeriodicalId":126112,"journal":{"name":"2020 International Conference on Advanced Science and Engineering (ICOASE)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Advanced Science and Engineering (ICOASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOASE51841.2020.9436591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The complexity of the electroencephalogram makes it a significant challenge for physicians and engineers to extract useful information from, process, and classify the electroencephalogram signals. Moreover, the difficulty in conducting clinical experimentation limits the collection of a sufficient number of electroencephalogram data samples for further processing using advanced computational techniques such as deep learning. This complexity and difficulty together with the inflexibility and the subtle linearity of the traditional signal processing techniques motivate us to find innovative techniques to address the problem of insufficient electroencephalogram data. In this paper, a number of computational and statistical techniques to generate electroencephalogram data from a previously done experiment on 30 healthy participants experiencing painful stimuli are applied. We believe this application will benefit the research in the field of biomedical signal processing.
生成脑电图数据的有效计算技术
脑电图的复杂性使得从脑电图信号中提取有用信息、处理和分类成为医生和工程师面临的一个重大挑战。此外,进行临床实验的困难限制了收集足够数量的脑电图数据样本,以便使用先进的计算技术(如深度学习)进行进一步处理。这种复杂性和困难,加上传统信号处理技术的不灵活性和微妙的线性,促使我们寻找创新的技术来解决脑电图数据不足的问题。在本文中,一些计算和统计技术,以产生脑电图数据,从30健康参与者经历痛苦刺激的先前完成的实验。我们相信这一应用将有利于生物医学信号处理领域的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信