Adaptive neural network-based sliding mode control for nonlinear uncertain systems with time-varying delay

Juntao Li, Xinlei Li, Hongjun Wang, Wenlin Li
{"title":"Adaptive neural network-based sliding mode control for nonlinear uncertain systems with time-varying delay","authors":"Juntao Li, Xinlei Li, Hongjun Wang, Wenlin Li","doi":"10.1109/ICICISYS.2010.5658746","DOIUrl":null,"url":null,"abstract":"This paper presents an adaptive-neural-network-based sliding mode control scheme for a class of nonlinear systems with unknown time-varying delay. Incorporating H∞ control technique and adaptive neural network method into sliding-mode control approach, adaptive sliding-mode controllers are designed for guaranteeing the H∞ performance of the closed-loop systems. One of the prominent advantages of the proposed scheme is that the nonlinear uncertainties are free of the matching condition and the linear boundary condition. Simulation results illustrate the obtained results.","PeriodicalId":339711,"journal":{"name":"2010 IEEE International Conference on Intelligent Computing and Intelligent Systems","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Intelligent Computing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICISYS.2010.5658746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an adaptive-neural-network-based sliding mode control scheme for a class of nonlinear systems with unknown time-varying delay. Incorporating H∞ control technique and adaptive neural network method into sliding-mode control approach, adaptive sliding-mode controllers are designed for guaranteeing the H∞ performance of the closed-loop systems. One of the prominent advantages of the proposed scheme is that the nonlinear uncertainties are free of the matching condition and the linear boundary condition. Simulation results illustrate the obtained results.
时变时滞非线性不确定系统的自适应神经网络滑模控制
针对一类未知时变时滞的非线性系统,提出了一种基于自适应神经网络的滑模控制方案。将H∞控制技术和自适应神经网络方法结合到滑模控制方法中,设计了自适应滑模控制器以保证闭环系统的H∞性能。该格式的一个突出优点是非线性不确定性不受匹配条件和线性边界条件的限制。仿真结果验证了所得结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信