An approximation method of extremely low p-values using permutation test

Sangseob Leem, T. Park
{"title":"An approximation method of extremely low p-values using permutation test","authors":"Sangseob Leem, T. Park","doi":"10.1109/BIBM.2018.8621082","DOIUrl":null,"url":null,"abstract":"The permutation test is a non-parametric method for assessing statistical significance and this method is widely used in a variety of(many) disciplines including bioinformatics. The permutation test is very useful in situations where a null distribution of test statistics is unknown or hard to determine. In permutation tests, p-values calculated by a proportion of the number of statistical values of randomly shuffled data, where the values are more extreme than, or equal to, statistical values of observed data, among the total number of permutations. In this method, the precision of significance depends on the number of permutations although computation time precludes achieving extremely low p-values.In this paper, we propose a novel strategy for approximating extremely low p-values. If two differently sized data sets show similar patterns, the smaller data set has a higher p-value than the larger one. In other words, dividing data simplifies assessing significances of subsets by a permutation test because of relatively large p-values. P-values of the subsets are then integrated into a final p-value as a meta-analysis. Our proposed method consists of two steps: (1) divide data into subsets and perform permutation tests for the subsets; and (2) integrate p-values by Stouffer’s z-score method. We herein demonstrate and validate our method using simulation studies. Those assessments show that p-values of about 1.0e-20 might (could) be well-estimated by the proposed method in a single day for samples larger than 5,000.","PeriodicalId":108667,"journal":{"name":"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2018.8621082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The permutation test is a non-parametric method for assessing statistical significance and this method is widely used in a variety of(many) disciplines including bioinformatics. The permutation test is very useful in situations where a null distribution of test statistics is unknown or hard to determine. In permutation tests, p-values calculated by a proportion of the number of statistical values of randomly shuffled data, where the values are more extreme than, or equal to, statistical values of observed data, among the total number of permutations. In this method, the precision of significance depends on the number of permutations although computation time precludes achieving extremely low p-values.In this paper, we propose a novel strategy for approximating extremely low p-values. If two differently sized data sets show similar patterns, the smaller data set has a higher p-value than the larger one. In other words, dividing data simplifies assessing significances of subsets by a permutation test because of relatively large p-values. P-values of the subsets are then integrated into a final p-value as a meta-analysis. Our proposed method consists of two steps: (1) divide data into subsets and perform permutation tests for the subsets; and (2) integrate p-values by Stouffer’s z-score method. We herein demonstrate and validate our method using simulation studies. Those assessments show that p-values of about 1.0e-20 might (could) be well-estimated by the proposed method in a single day for samples larger than 5,000.
利用置换检验的极低p值近似方法
排列检验是一种评估统计显著性的非参数方法,该方法广泛应用于包括生物信息学在内的各种学科。在检验统计量的零分布未知或难以确定的情况下,排列检验非常有用。在排列检验中,按随机洗牌数据的统计值数目的比例计算出的p值,其中的值比观察到的数据的统计值更极端或等于排列总数。在这种方法中,显著性的精度取决于排列的数量,尽管计算时间排除了实现极低的p值。在本文中,我们提出了一种近似极低p值的新策略。如果两个不同大小的数据集显示出相似的模式,则较小的数据集具有比较大的数据集更高的p值。换句话说,由于相对较大的p值,划分数据简化了通过排列检验评估子集的显著性。然后将子集的p值作为元分析整合到最终的p值中。我们提出的方法包括两个步骤:(1)将数据划分为子集,并对子集进行置换测试;(2)用Stouffer 's z-score法对p值进行积分。在此,我们用仿真研究证明并验证了我们的方法。这些评估表明,对于大于5000个样本,采用所提出的方法,可以在一天内很好地估计出约1.0e-20的p值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信