Maximum entropy and related methods

I. Csiszár
{"title":"Maximum entropy and related methods","authors":"I. Csiszár","doi":"10.1109/WITS.1994.513853","DOIUrl":null,"url":null,"abstract":"Originally coming from physics, maximum entropy (ME) has been promoted to a general principle of inference primarily by the works of Jaynes. ME applies to the problem of inferring a probability mass (or density) function, or any non-negative function p(x), when the available information specifies a set E of feasible functions, and there is a prior guess q /spl notin/ E. The author will review the arguments that have been put forward for justifying ME. In this author's opinion, the strongest theoretical support to ME is provided by the axiomatic approach. This shows that, in some sense, ME is the only logically consistent method of inferring a function subject to linear constraints.","PeriodicalId":423518,"journal":{"name":"Proceedings of 1994 Workshop on Information Theory and Statistics","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 Workshop on Information Theory and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WITS.1994.513853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Originally coming from physics, maximum entropy (ME) has been promoted to a general principle of inference primarily by the works of Jaynes. ME applies to the problem of inferring a probability mass (or density) function, or any non-negative function p(x), when the available information specifies a set E of feasible functions, and there is a prior guess q /spl notin/ E. The author will review the arguments that have been put forward for justifying ME. In this author's opinion, the strongest theoretical support to ME is provided by the axiomatic approach. This shows that, in some sense, ME is the only logically consistent method of inferring a function subject to linear constraints.
最大熵及其相关方法
最大熵(maximum entropy, ME)最初来源于物理学,主要是由Jaynes的著作将其提升为一般的推理原理。当可用信息指定可行函数的集合E,并且存在预先猜测q /spl notin/ E时,ME适用于推断概率质量(或密度)函数或任何非负函数p(x)的问题。作者将回顾为证明ME而提出的论点。在笔者看来,公理化方法为ME提供了最有力的理论支持。这表明,在某种意义上,ME是推断受线性约束的函数的唯一逻辑一致的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信