An evaluation of symbolic computation algorithms for the extraction of small signal parameters of a linear circuit

C. Zorio, I. Rusu, M. Bodea
{"title":"An evaluation of symbolic computation algorithms for the extraction of small signal parameters of a linear circuit","authors":"C. Zorio, I. Rusu, M. Bodea","doi":"10.1109/SM2ACD.2010.5672366","DOIUrl":null,"url":null,"abstract":"Using symbolic algorithms for small signal circuit parameter extraction could make possible implementing extraction programs which, unlike those based on pure numerical methods, no longer require initial (“start”) values for the parameters being extracted, thus ensuring that the final result corresponds to the true global minimum of the error function. Solving the extraction problem, in the particular case of a linear circuit, can be reduced to the math problem of determining the solutions of a system of polynomial equations. During resolution, classical mathematical algorithms used in the symbolic computing phase could generate during execution symbolic polynomials of size that could increase too fast (by a double exponential law) with the size of the input polynomials (thus making the symbolic computation useless), but in the case of specialized algorithms the size of intermediate polynomials could grow much slower (only by a polynomial law). An insight of the state of art of computational algebra can identify the main algorithms having good performance in terms of computational complexity to be used for symbolic variables elimination between the equations of a polynomial system. This paper analyzes, using a particular circuit, the performance of existing implementations for CAD math systems, which use symbolic methods based on different mathematical approaches, and compares the performances of these programs.","PeriodicalId":442381,"journal":{"name":"2010 XIth International Workshop on Symbolic and Numerical Methods, Modeling and Applications to Circuit Design (SM2ACD)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 XIth International Workshop on Symbolic and Numerical Methods, Modeling and Applications to Circuit Design (SM2ACD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SM2ACD.2010.5672366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Using symbolic algorithms for small signal circuit parameter extraction could make possible implementing extraction programs which, unlike those based on pure numerical methods, no longer require initial (“start”) values for the parameters being extracted, thus ensuring that the final result corresponds to the true global minimum of the error function. Solving the extraction problem, in the particular case of a linear circuit, can be reduced to the math problem of determining the solutions of a system of polynomial equations. During resolution, classical mathematical algorithms used in the symbolic computing phase could generate during execution symbolic polynomials of size that could increase too fast (by a double exponential law) with the size of the input polynomials (thus making the symbolic computation useless), but in the case of specialized algorithms the size of intermediate polynomials could grow much slower (only by a polynomial law). An insight of the state of art of computational algebra can identify the main algorithms having good performance in terms of computational complexity to be used for symbolic variables elimination between the equations of a polynomial system. This paper analyzes, using a particular circuit, the performance of existing implementations for CAD math systems, which use symbolic methods based on different mathematical approaches, and compares the performances of these programs.
线性电路小信号参数提取的符号计算算法评价
使用符号算法进行小信号电路参数提取,可以实现与纯数值方法不同的提取程序,不再需要提取参数的初始(“起始”)值,从而确保最终结果对应于误差函数的真正全局最小值。在线性电路的特殊情况下,解决提取问题可以简化为确定多项式方程组解的数学问题。在解析过程中,符号计算阶段中使用的经典数学算法可能在执行过程中生成的符号多项式的大小可能随着输入多项式的大小而过快地增长(按双指数定律)(从而使符号计算无用),但在专门算法的情况下,中间多项式的大小可能增长得慢得多(仅按多项式定律)。对当前计算代数技术的深入了解可以识别出在计算复杂度方面具有良好性能的主要算法,用于多项式系统方程之间的符号变量消去。本文通过一个特定的电路,分析了现有的基于不同数学方法的符号方法的CAD数学系统的实现性能,并比较了这些程序的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信