Predictability Study of Viscoelastic Turbulent Channel Flow Using Deep Learning

Atsushi Nagamachi, T. Tsukahara
{"title":"Predictability Study of Viscoelastic Turbulent Channel Flow Using Deep Learning","authors":"Atsushi Nagamachi, T. Tsukahara","doi":"10.1115/ajkfluids2019-5261","DOIUrl":null,"url":null,"abstract":"\n We tested Artificial Neural Networks (ANNs) to predict a fully-developed turbulent channel flow of a viscoelastic fluid in preparation for elucidating flow phenomenon and solving the difficulty in DNS (Direct Numerical Simulation) due to numerical instability of the viscoelastic fluid. Two kinds of ANNs (multi-layer perceptron (MLP) and U-Net) were trained using DNS data to predict conformation stress from given instantaneous field. The MLP showed accurate predictions and predictions got better with z-score normalization. ANN predicted accurately in near-wall region having coherent structures. In addition, we demonstrated that ANN get the nonlinear relationship between velocity gradient and viscoelastic stress partially.","PeriodicalId":346736,"journal":{"name":"Volume 2: Computational Fluid Dynamics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Computational Fluid Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ajkfluids2019-5261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We tested Artificial Neural Networks (ANNs) to predict a fully-developed turbulent channel flow of a viscoelastic fluid in preparation for elucidating flow phenomenon and solving the difficulty in DNS (Direct Numerical Simulation) due to numerical instability of the viscoelastic fluid. Two kinds of ANNs (multi-layer perceptron (MLP) and U-Net) were trained using DNS data to predict conformation stress from given instantaneous field. The MLP showed accurate predictions and predictions got better with z-score normalization. ANN predicted accurately in near-wall region having coherent structures. In addition, we demonstrated that ANN get the nonlinear relationship between velocity gradient and viscoelastic stress partially.
基于深度学习的粘弹性湍流通道流动可预测性研究
为了阐明粘弹性流体的流动现象,解决直接数值模拟(DNS)中黏弹性流体数值不稳定性所带来的困难,我们测试了人工神经网络(ann)来预测粘弹性流体的完全发育的湍流通道流动。利用DNS数据训练两种人工神经网络(多层感知器(MLP)和U-Net)来预测给定瞬时场的构象应力。MLP预测准确,z-score归一化后预测效果更好。人工神经网络对具有相干结构的近壁区域进行了准确预测。此外,我们还证明了人工神经网络部分地得到了速度梯度与粘弹性应力之间的非线性关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信