MajorityNets: BNNs Utilising Approximate Popcount for Improved Efficiency

Seyedramin Rasoulinezhad, Sean Fox, Hao Zhou, Lingli Wang, D. Boland, P. Leong
{"title":"MajorityNets: BNNs Utilising Approximate Popcount for Improved Efficiency","authors":"Seyedramin Rasoulinezhad, Sean Fox, Hao Zhou, Lingli Wang, D. Boland, P. Leong","doi":"10.1109/ICFPT47387.2019.00062","DOIUrl":null,"url":null,"abstract":"Binarized neural networks (BNNs) have shown exciting potential for utilising neural networks in embedded implementations where area, energy and latency constraints are paramount. With BNNs, multiply-accumulate (MAC) operations can be simplified to XnorPopcount operations, leading to massive reductions in both memory and computation resources. Furthermore, multiple efficient implementations of BNNs have been reported on field-programmable gate array (FPGA) implementations. This paper proposes a smaller, faster, more energy-efficient approximate replacement for the XnorPopcount operation, called XNorMaj, inspired by state-of-the-art FPGA look-up table schemes which benefit FPGA implementations. We show that XNorMaj is up to 2x more resource-efficient than the XnorPopcount operation. While the XNorMaj operation has a minor detrimental impact on accuracy, the resource savings enable us to use larger networks to recover the loss.","PeriodicalId":241340,"journal":{"name":"2019 International Conference on Field-Programmable Technology (ICFPT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Field-Programmable Technology (ICFPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFPT47387.2019.00062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Binarized neural networks (BNNs) have shown exciting potential for utilising neural networks in embedded implementations where area, energy and latency constraints are paramount. With BNNs, multiply-accumulate (MAC) operations can be simplified to XnorPopcount operations, leading to massive reductions in both memory and computation resources. Furthermore, multiple efficient implementations of BNNs have been reported on field-programmable gate array (FPGA) implementations. This paper proposes a smaller, faster, more energy-efficient approximate replacement for the XnorPopcount operation, called XNorMaj, inspired by state-of-the-art FPGA look-up table schemes which benefit FPGA implementations. We show that XNorMaj is up to 2x more resource-efficient than the XnorPopcount operation. While the XNorMaj operation has a minor detrimental impact on accuracy, the resource savings enable us to use larger networks to recover the loss.
MajorityNets:利用近似人口数量提高效率的 BNNs
二值化神经网络(Binarized neural networks,BNNs)在面积、能耗和延迟限制极为严格的嵌入式实施中显示出利用神经网络的巨大潜力。利用 BNN,乘法累加(MAC)操作可简化为 XnorPopcount 操作,从而大量减少内存和计算资源。此外,在现场可编程门阵列(FPGA)实现方面,已经报道了多种 BNN 的高效实现方法。本文受最先进的 FPGA 查找表方案的启发,提出了一种更小、更快、更节能的近似替代 XnorPopcount 操作的方法,称为 XNorMaj,它有利于 FPGA 实现。我们的研究表明,XNorMaj 比 XnorPopcount 运算的资源效率高达 2 倍。虽然 XNorMaj 操作对准确性有轻微的不利影响,但节省的资源使我们能够使用更大的网络来挽回损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信