Segment and Combine Approach for Biological Sequence Classification

P. Geurts, Antia Blanco Cuesta, L. Wehenkel
{"title":"Segment and Combine Approach for Biological Sequence Classification","authors":"P. Geurts, Antia Blanco Cuesta, L. Wehenkel","doi":"10.1109/CIBCB.2005.1594917","DOIUrl":null,"url":null,"abstract":"This paper presents a new algorithm based on the segment and combine paradigm, for automatic classification of biological sequences. It classifies sequences by aggregating the information about their subsequences predicted by a classifier derived by machine learning from a random sample of training subsequences. This generic approach is combined with decision tree based ensemble methods, scalable both with respect to sample size and vocabulary size. The method is applied to three families of problems: DNA sequence recognition, splice junction detection, and gene regulon prediction. With respect to standard approaches based on n-grams, it appears competitive in terms of accuracy, flexibility, and scalability. The paper also highlights the possibility to exploit the resulting models to identify interpretable patterns specific of a given class of biological sequences.","PeriodicalId":330810,"journal":{"name":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2005.1594917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper presents a new algorithm based on the segment and combine paradigm, for automatic classification of biological sequences. It classifies sequences by aggregating the information about their subsequences predicted by a classifier derived by machine learning from a random sample of training subsequences. This generic approach is combined with decision tree based ensemble methods, scalable both with respect to sample size and vocabulary size. The method is applied to three families of problems: DNA sequence recognition, splice junction detection, and gene regulon prediction. With respect to standard approaches based on n-grams, it appears competitive in terms of accuracy, flexibility, and scalability. The paper also highlights the possibility to exploit the resulting models to identify interpretable patterns specific of a given class of biological sequences.
生物序列分段与组合分类方法
提出了一种基于片段和组合范式的生物序列自动分类算法。它通过从训练子序列的随机样本中通过机器学习获得的分类器预测的子序列信息来对序列进行分类。这种通用方法与基于决策树的集成方法相结合,在样本量和词汇量方面都具有可扩展性。该方法应用于三大类问题:DNA序列识别、剪接连接检测和基因调控预测。相对于基于n-gram的标准方法,它在准确性、灵活性和可伸缩性方面具有竞争力。本文还强调了利用所得模型来识别特定于某一类生物序列的可解释模式的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信