Support vector machines using multi objective programming and goal programming

Harotaka Nakayama, Takeshi Asada
{"title":"Support vector machines using multi objective programming and goal programming","authors":"Harotaka Nakayama, Takeshi Asada","doi":"10.1109/ICONIP.2002.1198221","DOIUrl":null,"url":null,"abstract":"Support vector machines (SVMs) are now thought as a powerful method for solving pattern recognition problems. SVMs are usually formulated as quadratic programming. Using another distance function, SVMs are formulated as linear programming. SVMs generally tend to make overlearning. In order to overcome this difficulty, the notion of soft margin method is introduced. In this event, it is difficult to decide the weight for slack variable reflecting soft margin. The soft margin method is extended to multi objective linear programming. It is shown through several examples that SVM reformulated as multi objective linear programming can give a good performance in pattern classification.","PeriodicalId":146553,"journal":{"name":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.2002.1198221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Support vector machines (SVMs) are now thought as a powerful method for solving pattern recognition problems. SVMs are usually formulated as quadratic programming. Using another distance function, SVMs are formulated as linear programming. SVMs generally tend to make overlearning. In order to overcome this difficulty, the notion of soft margin method is introduced. In this event, it is difficult to decide the weight for slack variable reflecting soft margin. The soft margin method is extended to multi objective linear programming. It is shown through several examples that SVM reformulated as multi objective linear programming can give a good performance in pattern classification.
支持向量机采用多目标规划和目标规划
支持向量机(svm)目前被认为是解决模式识别问题的一种强有力的方法。支持向量机通常被表述为二次规划。使用另一个距离函数,支持向量机被表述为线性规划。支持向量机通常倾向于过度学习。为了克服这一困难,引入了软边界法的概念。在这种情况下,很难确定反映软裕度的松弛变量的权重。将软裕度法推广到多目标线性规划中。实例表明,将支持向量机重新表述为多目标线性规划,可以很好地进行模式分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信