When mechanisms of coalescence and sintering at the nanoscale fundamentally differ: Molecular dynamics study.

V. Samsonov, I. Talyzin, V. Puytov, S. Vasilyev, A. A. Romanov, M. Alymov
{"title":"When mechanisms of coalescence and sintering at the nanoscale fundamentally differ: Molecular dynamics study.","authors":"V. Samsonov, I. Talyzin, V. Puytov, S. Vasilyev, A. A. Romanov, M. Alymov","doi":"10.1063/5.0075748","DOIUrl":null,"url":null,"abstract":"Employing classical isothermal molecular dynamics, we simulated coalescence of mesoscopic Au nanodroplets, containing from several thousands to several hundred thousands of atoms, and sintering of mesoscopic solid Au nanoparticles. For our atomistic simulations, we used the embedded atom method. The employed open access program large-scale atomic/molecular massively parallel simulator makes it possible to realize parallel graphical processing unit calculations. We have made a conclusion that the regularities and mechanisms of the nanodroplet coalescence (temperature is higher than the nanoparticle melting temperature) and of the solid nanoparticle sintering differ from each other. We have also concluded that the nanodroplet coalescence may be interpreted as a hydrodynamic phenomenon at the nanoscale whereas sintering of solid nanoparticles is a much more complex phenomenon related to different mechanisms, including collective rearrangements of atoms, the surface diffusion, and other types of diffusion. At the same time, collective rearrangements of atoms relate not only to the solid nanoparticle sintering but also to the nanodroplet coalescence. In general, our molecular dynamics results on sintering of Au nanoparticles consisting of 10 000-30 000 atoms agree with the Ferrando-Minnai kinetic trapping concept that was earlier confirmed in molecular dynamics experiments on Au nanoclusters consisting of about 100 atoms.","PeriodicalId":446961,"journal":{"name":"The Journal of chemical physics","volume":"156 21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of chemical physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0075748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Employing classical isothermal molecular dynamics, we simulated coalescence of mesoscopic Au nanodroplets, containing from several thousands to several hundred thousands of atoms, and sintering of mesoscopic solid Au nanoparticles. For our atomistic simulations, we used the embedded atom method. The employed open access program large-scale atomic/molecular massively parallel simulator makes it possible to realize parallel graphical processing unit calculations. We have made a conclusion that the regularities and mechanisms of the nanodroplet coalescence (temperature is higher than the nanoparticle melting temperature) and of the solid nanoparticle sintering differ from each other. We have also concluded that the nanodroplet coalescence may be interpreted as a hydrodynamic phenomenon at the nanoscale whereas sintering of solid nanoparticles is a much more complex phenomenon related to different mechanisms, including collective rearrangements of atoms, the surface diffusion, and other types of diffusion. At the same time, collective rearrangements of atoms relate not only to the solid nanoparticle sintering but also to the nanodroplet coalescence. In general, our molecular dynamics results on sintering of Au nanoparticles consisting of 10 000-30 000 atoms agree with the Ferrando-Minnai kinetic trapping concept that was earlier confirmed in molecular dynamics experiments on Au nanoclusters consisting of about 100 atoms.
当纳米尺度上的聚结和烧结机制根本不同时:分子动力学研究。
利用经典的等温分子动力学,我们模拟了介观金纳米液滴(包含数千到数十万个原子)的聚结,以及介观固体金纳米颗粒的烧结。对于我们的原子模拟,我们使用嵌入原子方法。所采用的开放存取程序大规模原子/分子大规模并行模拟器使图形处理单元的并行计算成为可能。得出了纳米液滴聚结(温度高于纳米颗粒熔化温度)和固体纳米颗粒烧结的规律和机理不同的结论。我们还得出结论,纳米液滴聚结可以解释为纳米尺度上的流体动力学现象,而固体纳米颗粒的烧结是一个更复杂的现象,涉及不同的机制,包括原子的集体重排、表面扩散和其他类型的扩散。同时,原子的集体重排不仅与固体纳米颗粒的烧结有关,而且与纳米液滴的聚结有关。总的来说,我们在由10000 - 30000个原子组成的金纳米颗粒烧结的分子动力学结果与先前在由大约100个原子组成的金纳米团簇的分子动力学实验中证实的fernando - minnai动力学俘获概念一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信