Multimodal late fusion bag of features applied to scene detection

Bruno Lorenço Lopes, R. Goularte
{"title":"Multimodal late fusion bag of features applied to scene detection","authors":"Bruno Lorenço Lopes, R. Goularte","doi":"10.1145/2526188.2526202","DOIUrl":null,"url":null,"abstract":"Recent advances in technology have increased the availability of video data, creating a strong requirement for efficient systems to manage those materials. To make efficient use of video information, first, the data has to be automatic segmented into smaller, manageable and understandable units, like scenes. This paper presents a new, multimodal video scene segmentation technique. The proposed approach is to combine Bag of Features based techniques (visual and aural) in order to explore the latent semantic obtained by them in complementary way, improving scene segmentation. The results achieved showed to be promising.","PeriodicalId":114454,"journal":{"name":"Brazilian Symposium on Multimedia and the Web","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Symposium on Multimedia and the Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2526188.2526202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances in technology have increased the availability of video data, creating a strong requirement for efficient systems to manage those materials. To make efficient use of video information, first, the data has to be automatic segmented into smaller, manageable and understandable units, like scenes. This paper presents a new, multimodal video scene segmentation technique. The proposed approach is to combine Bag of Features based techniques (visual and aural) in order to explore the latent semantic obtained by them in complementary way, improving scene segmentation. The results achieved showed to be promising.
多模态后期融合包特征应用于场景检测
最近技术的进步增加了视频数据的可用性,强烈要求有效的系统来管理这些材料。为了有效地利用视频信息,首先,必须将数据自动分割成更小的、可管理和可理解的单元,如场景。本文提出了一种新的多模态视频场景分割技术。本文提出的方法是将基于Bag of Features的技术(视觉和听觉)相结合,以互补的方式挖掘它们所获得的潜在语义,从而改进场景分割。取得的结果显示是有希望的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信