Dynamic language modeling for a daily broadcast news transcription system

Ciro Martins, A. Teixeira, J. Neto
{"title":"Dynamic language modeling for a daily broadcast news transcription system","authors":"Ciro Martins, A. Teixeira, J. Neto","doi":"10.1109/ASRU.2007.4430103","DOIUrl":null,"url":null,"abstract":"When transcribing Broadcast News data in highly inflected languages, the vocabulary growth leads to high out-of-vocabulary rates. To address this problem, we propose a daily and unsupervised adaptation approach which dynamically adapts the active vocabulary and LM to the topic of the current news segment during a multi-pass speech recognition process. Based on texts daily available on the Web, a story-based vocabulary is selected using a morpho-syntatic technique. Using an Information Retrieval engine, relevant documents are extracted from a large corpus to generate a story-based LM. Experiments were carried out for a European Portuguese BN transcription system. Preliminary results yield a relative reduction of 65.2% in OOV and 6.6% in WER.","PeriodicalId":371729,"journal":{"name":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","volume":"386 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2007.4430103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

When transcribing Broadcast News data in highly inflected languages, the vocabulary growth leads to high out-of-vocabulary rates. To address this problem, we propose a daily and unsupervised adaptation approach which dynamically adapts the active vocabulary and LM to the topic of the current news segment during a multi-pass speech recognition process. Based on texts daily available on the Web, a story-based vocabulary is selected using a morpho-syntatic technique. Using an Information Retrieval engine, relevant documents are extracted from a large corpus to generate a story-based LM. Experiments were carried out for a European Portuguese BN transcription system. Preliminary results yield a relative reduction of 65.2% in OOV and 6.6% in WER.
每日广播新闻转录系统的动态语言建模
在用高屈折语转录广播新闻数据时,词汇量的增长导致了高词汇外率。为了解决这个问题,我们提出了一种每日无监督自适应方法,该方法在多通道语音识别过程中动态地使活动词汇和LM适应当前新闻片段的主题。基于Web上每天可用的文本,使用形态-句法技术选择基于故事的词汇表。使用信息检索引擎,从大型语料库中提取相关文档,生成基于故事的LM。实验进行了欧洲葡萄牙语BN转录系统。初步结果显示,OOV相对降低65.2%,WER相对降低6.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信