Normality Guided Multiple Instance Learning for Weakly Supervised Video Anomaly Detection

S. Park, H. Kim, Minsu Kim, Dahye Kim, K. Sohn
{"title":"Normality Guided Multiple Instance Learning for Weakly Supervised Video Anomaly Detection","authors":"S. Park, H. Kim, Minsu Kim, Dahye Kim, K. Sohn","doi":"10.1109/WACV56688.2023.00269","DOIUrl":null,"url":null,"abstract":"Weakly supervised Video Anomaly Detection (wVAD) aims to distinguish anomalies from normal events based on video-level supervision. Most existing works utilize Multiple Instance Learning (MIL) with ranking loss to tackle this task. These methods, however, rely on noisy predictions from a MIL-based classifier for target instance selection in ranking loss, degrading model performance. To overcome this problem, we propose Normality Guided Multiple Instance Learning (NG-MIL) framework, which encodes diverse normal patterns from noise-free normal videos into prototypes for constructing a similarity-based classifier. By ensembling predictions of two classifiers, our method could refine the anomaly scores, reducing training instability from weak labels. Moreover, we introduce normality clustering and normality guided triplet loss constraining inner bag instances to boost the effect of NG-MIL and increase the discriminability of classifiers. Extensive experiments on three public datasets (ShanghaiTech, UCF-Crime, XD-Violence) demonstrate that our method is comparable to or better than existing weakly supervised methods, achieving state-of-the-art results.","PeriodicalId":270631,"journal":{"name":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV56688.2023.00269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Weakly supervised Video Anomaly Detection (wVAD) aims to distinguish anomalies from normal events based on video-level supervision. Most existing works utilize Multiple Instance Learning (MIL) with ranking loss to tackle this task. These methods, however, rely on noisy predictions from a MIL-based classifier for target instance selection in ranking loss, degrading model performance. To overcome this problem, we propose Normality Guided Multiple Instance Learning (NG-MIL) framework, which encodes diverse normal patterns from noise-free normal videos into prototypes for constructing a similarity-based classifier. By ensembling predictions of two classifiers, our method could refine the anomaly scores, reducing training instability from weak labels. Moreover, we introduce normality clustering and normality guided triplet loss constraining inner bag instances to boost the effect of NG-MIL and increase the discriminability of classifiers. Extensive experiments on three public datasets (ShanghaiTech, UCF-Crime, XD-Violence) demonstrate that our method is comparable to or better than existing weakly supervised methods, achieving state-of-the-art results.
弱监督视频异常检测的正态引导多实例学习
弱监督视频异常检测(wVAD)的目的是在视频级监督的基础上区分异常事件和正常事件。现有的大多数研究都是利用带有排序损失的多实例学习来解决这个问题。然而,这些方法依赖于基于mil的分类器的噪声预测,在排序损失中选择目标实例,降低了模型的性能。为了克服这个问题,我们提出了正态引导多实例学习(NG-MIL)框架,该框架将来自无噪声正常视频的各种正态模式编码为原型,用于构建基于相似性的分类器。通过集成两个分类器的预测,我们的方法可以细化异常分数,减少弱标签的训练不稳定性。此外,我们还引入了正态聚类和正态引导的三重态损失约束内袋实例来增强NG-MIL的效果,提高分类器的可判别性。在三个公共数据集(ShanghaiTech, UCF-Crime, XD-Violence)上进行的大量实验表明,我们的方法与现有的弱监督方法相当或更好,获得了最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信