Applications of a Stochastic–Fuzzy Approach to Modeling and Optimal Control of Discrete Time Systems by Using Large Scale Data Processing: An advanced Approach

A. Walaszek-Babiszewska
{"title":"Applications of a Stochastic–Fuzzy Approach to Modeling and Optimal Control of Discrete Time Systems by Using Large Scale Data Processing: An advanced Approach","authors":"A. Walaszek-Babiszewska","doi":"10.9734/bpi/ctmcs/v10/4153f","DOIUrl":null,"url":null,"abstract":"The main purpose of this chapter is to  propose  a mathematical method to fuzzy control of the stochastic-fuzzy object. The proposed hybrid method uses both the stochastic–fuzzy knowledge base describing the object under control, as well as the large scale data to calculate probabilities of fuzzy conditional statements in the knowledge base. \nThis study includes: the  presentation of multistage fuzzy optimization methods with reference to the dynamical discrete systems represented by deterministic, stochastic and fuzzy models (paragraph 2); the proposition of modeling stochastic-fuzzy object under control in the form of knowledge base (paragraph 3). Exemplary calculations illustrate the theoretical description.","PeriodicalId":364769,"journal":{"name":"Current Topics on Mathematics and Computer Science Vol. 10","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Topics on Mathematics and Computer Science Vol. 10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/bpi/ctmcs/v10/4153f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The main purpose of this chapter is to  propose  a mathematical method to fuzzy control of the stochastic-fuzzy object. The proposed hybrid method uses both the stochastic–fuzzy knowledge base describing the object under control, as well as the large scale data to calculate probabilities of fuzzy conditional statements in the knowledge base. This study includes: the  presentation of multistage fuzzy optimization methods with reference to the dynamical discrete systems represented by deterministic, stochastic and fuzzy models (paragraph 2); the proposition of modeling stochastic-fuzzy object under control in the form of knowledge base (paragraph 3). Exemplary calculations illustrate the theoretical description.
随机-模糊方法在大规模数据处理离散时间系统建模和最优控制中的应用:一种先进方法
本章的主要目的是提出一种随机模糊对象模糊控制的数学方法。该混合方法利用描述被控对象的随机-模糊知识库和大规模数据计算知识库中模糊条件语句的概率。本研究包括:针对以确定性、随机和模糊模型为代表的动态离散系统提出多阶段模糊优化方法(第2段);以知识库的形式对控制下的随机模糊对象建模的命题(第3段)。示例计算说明了理论描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信