{"title":"An interpretation of system F through bar recursion","authors":"Valentin Blot","doi":"10.1109/LICS.2017.8005066","DOIUrl":null,"url":null,"abstract":"There are two possible computational interpretations of second-order arithmetic: Girard's system F or Spector's bar recursion and its variants. While the logic is the same, the programs obtained from these two interpretations have a fundamentally different computational behavior and their relationship is not well understood. We make a step towards a comparison by defining the first translation of system F into a simply-typed total language with a variant of bar recursion. This translation relies on a realizability interpretation of second-order arithmetic. Due to Gödel's incompleteness theorem there is no proof of termination of system F within second-order arithmetic. However, for each individual term of system F there is a proof in second-order arithmetic that it terminates, with its realizability interpretation providing a bound on the number of reduction steps to reach a normal form. Using this bound, we compute the normal form through primitive recursion. Moreover, since the normalization proof of system F proceeds by induction on typing derivations, the translation is compositional. The flexibility of our method opens the possibility of getting a more direct translation that will provide an alternative approach to the study of polymorphism, namely through bar recursion.","PeriodicalId":313950,"journal":{"name":"2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2017.8005066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
There are two possible computational interpretations of second-order arithmetic: Girard's system F or Spector's bar recursion and its variants. While the logic is the same, the programs obtained from these two interpretations have a fundamentally different computational behavior and their relationship is not well understood. We make a step towards a comparison by defining the first translation of system F into a simply-typed total language with a variant of bar recursion. This translation relies on a realizability interpretation of second-order arithmetic. Due to Gödel's incompleteness theorem there is no proof of termination of system F within second-order arithmetic. However, for each individual term of system F there is a proof in second-order arithmetic that it terminates, with its realizability interpretation providing a bound on the number of reduction steps to reach a normal form. Using this bound, we compute the normal form through primitive recursion. Moreover, since the normalization proof of system F proceeds by induction on typing derivations, the translation is compositional. The flexibility of our method opens the possibility of getting a more direct translation that will provide an alternative approach to the study of polymorphism, namely through bar recursion.