Detecting the Presence of Vehicles and Equipment in SAR Imagery Using Image Texture Features

Michael Harner, A. Groener, M. D. Pritt
{"title":"Detecting the Presence of Vehicles and Equipment in SAR Imagery Using Image Texture Features","authors":"Michael Harner, A. Groener, M. D. Pritt","doi":"10.1109/AIPR47015.2019.9174598","DOIUrl":null,"url":null,"abstract":"In this work, we present a methodology for monitoring man-made, construction-like activities in low-resolution SAR imagery. Our source of data is the European Space Agency’s Sentinel-l satellite which provides global coverage at a 12-day revisit rate. Despite limitations in resolution, our methodology enables us to monitor activity levels (i.e. presence of vehicles, equipment) of a pre-defined location by analyzing the texture of detected SAR imagery. Using an exploratory dataset, we trained a support vector machine (SVM), a random binary forest, and a fully-connected neural network for classification. We use Haralick texture features in the VV and VH polarization channels as the input features to our classifiers. Each classifier showed promising results in being able to distinguish between two possible types of construction-site activity levels. This paper documents a case study that is centered around monitoring the construction process for oil and gas fracking wells.","PeriodicalId":167075,"journal":{"name":"2019 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR47015.2019.9174598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this work, we present a methodology for monitoring man-made, construction-like activities in low-resolution SAR imagery. Our source of data is the European Space Agency’s Sentinel-l satellite which provides global coverage at a 12-day revisit rate. Despite limitations in resolution, our methodology enables us to monitor activity levels (i.e. presence of vehicles, equipment) of a pre-defined location by analyzing the texture of detected SAR imagery. Using an exploratory dataset, we trained a support vector machine (SVM), a random binary forest, and a fully-connected neural network for classification. We use Haralick texture features in the VV and VH polarization channels as the input features to our classifiers. Each classifier showed promising results in being able to distinguish between two possible types of construction-site activity levels. This paper documents a case study that is centered around monitoring the construction process for oil and gas fracking wells.
利用图像纹理特征检测SAR图像中车辆和设备的存在
在这项工作中,我们提出了一种在低分辨率SAR图像中监测人造建筑活动的方法。我们的数据来源是欧洲航天局的哨兵1号卫星,它以12天的重访率提供全球覆盖。尽管分辨率有限,但我们的方法使我们能够通过分析检测到的SAR图像的纹理来监测预定义位置的活动水平(即车辆,设备的存在)。使用探索性数据集,我们训练了支持向量机(SVM)、随机二叉森林和全连接神经网络进行分类。我们使用VV和VH极化通道中的Haralick纹理特征作为分类器的输入特征。每个分类器在能够区分两种可能类型的建筑工地活动水平方面显示出有希望的结果。本文记录了一个以监测油气压裂井施工过程为中心的案例研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信