Robust understanding of EEG patterns in silent speech

P. Ghane, G. Hossain, A. Tovar
{"title":"Robust understanding of EEG patterns in silent speech","authors":"P. Ghane, G. Hossain, A. Tovar","doi":"10.1109/NAECON.2015.7443095","DOIUrl":null,"url":null,"abstract":"This paper describes the secondary research on feature extraction and selection for decoding the brain electroencephalograph (EEG) signals in designing a prosthetic arm, a Brain Computer Interface (BCI) system. It considers EEG pattern recognition using Principal Component Analysis (PCA) for Feature Extraction. The data used for this research is the EEG signal that is recorded during the imagination of vowels /a/, /e/, /i/, /o/, /u/ by 20 subjects. Since brain signals are very noisy in nature, a robust PCA is also used to extract the best solution to find principal patterns of the data. The final goal of our research is to train the system based on the information in the sample EEG data and make it ready to classify the pattern correctly.","PeriodicalId":133804,"journal":{"name":"2015 National Aerospace and Electronics Conference (NAECON)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 National Aerospace and Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2015.7443095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper describes the secondary research on feature extraction and selection for decoding the brain electroencephalograph (EEG) signals in designing a prosthetic arm, a Brain Computer Interface (BCI) system. It considers EEG pattern recognition using Principal Component Analysis (PCA) for Feature Extraction. The data used for this research is the EEG signal that is recorded during the imagination of vowels /a/, /e/, /i/, /o/, /u/ by 20 subjects. Since brain signals are very noisy in nature, a robust PCA is also used to extract the best solution to find principal patterns of the data. The final goal of our research is to train the system based on the information in the sample EEG data and make it ready to classify the pattern correctly.
对无声言语脑电模式的稳健理解
本文介绍了在义肢脑机接口(BCI)系统设计中,对脑电信号的特征提取和解码选择进行的二次研究。它考虑了用主成分分析(PCA)进行特征提取的脑电模式识别。本研究使用的数据是20名受试者在想象元音/a/、/e/、/i/、/o/、/u/时所记录的脑电图信号。由于大脑信号本质上是非常嘈杂的,因此还使用鲁棒PCA来提取最佳解决方案,以找到数据的主要模式。我们研究的最终目标是基于样本脑电数据中的信息对系统进行训练,使其能够正确分类模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信