{"title":"Motion planning of computer controlled automata","authors":"R. Ikeura, M. Kimura, H. Inooka","doi":"10.1109/ROMAN.1993.367693","DOIUrl":null,"url":null,"abstract":"This paper describes motion planning of computer controlled automata (CCA). We consider two steps for the motion planning; (1) Create rough patterns of motion. (2) Modify the patterns iteratively and create a desired motion. A real time planning method for a robot task, which has been developed by authors, is applied as the first step. Using this method, a human operator can generate a trajectory of the CCA while monitoring the actual motion by operating a joystick. For accurately modifying inadequate motion in the second step, a CAD system is developed. Tools for the CAD system are described and, then, the effectiveness is shown in an experimental example.<<ETX>>","PeriodicalId":270591,"journal":{"name":"Proceedings of 1993 2nd IEEE International Workshop on Robot and Human Communication","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1993 2nd IEEE International Workshop on Robot and Human Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROMAN.1993.367693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper describes motion planning of computer controlled automata (CCA). We consider two steps for the motion planning; (1) Create rough patterns of motion. (2) Modify the patterns iteratively and create a desired motion. A real time planning method for a robot task, which has been developed by authors, is applied as the first step. Using this method, a human operator can generate a trajectory of the CCA while monitoring the actual motion by operating a joystick. For accurately modifying inadequate motion in the second step, a CAD system is developed. Tools for the CAD system are described and, then, the effectiveness is shown in an experimental example.<>