{"title":"Hybrid Beamforming for Bidirectional Massive MIMO Full Duplex Under Practical Considerations","authors":"Chandan Kumar Sheemar, D. Slock","doi":"10.1109/VTC2021-Spring51267.2021.9448636","DOIUrl":null,"url":null,"abstract":"In-band Full-Duplex (FD) is a promising wireless transmission technology allowing to increase data rates by up to a factor of two, via simultaneous transmission and reception, but with a potential to increase system throughput even much more in cognitive radio and random access systems thanks to simultaneous transmission and sensing. In this work, we consider a practical hybrid beamforming design for a bidirectional massive MIMO FD system under the joint per-antenna and sum-power constraints. Moreover, we consider non-ideal circuitry in the transmit and receive chains, which is modelled with the limited dynamic range (LDR) noise model. The per-antenna power constraints take into account the actual physical limits of the power amplifiers and the sum-power constraints are imposed to limit the total transmit power. The precoders are optimized with alternating optimization by using the minorization-maximization approach. Simulation results show significant performance improvement compared to a traditional bidirectional half-duplex system.","PeriodicalId":194840,"journal":{"name":"2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTC2021-Spring51267.2021.9448636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
In-band Full-Duplex (FD) is a promising wireless transmission technology allowing to increase data rates by up to a factor of two, via simultaneous transmission and reception, but with a potential to increase system throughput even much more in cognitive radio and random access systems thanks to simultaneous transmission and sensing. In this work, we consider a practical hybrid beamforming design for a bidirectional massive MIMO FD system under the joint per-antenna and sum-power constraints. Moreover, we consider non-ideal circuitry in the transmit and receive chains, which is modelled with the limited dynamic range (LDR) noise model. The per-antenna power constraints take into account the actual physical limits of the power amplifiers and the sum-power constraints are imposed to limit the total transmit power. The precoders are optimized with alternating optimization by using the minorization-maximization approach. Simulation results show significant performance improvement compared to a traditional bidirectional half-duplex system.